

Evolving Paradigms in Machinery Fault Diagnosis: From Learning-Based Models to Next-Generation Diagnostic Intelligence

Ruqiang Yan

School of Mechanical Engineering, Xi'an Jiaotong University,
Xi'an 710049, P.R. China

Abstract

Machinery fault diagnosis (MFD) is central to prognostics and health management, ensuring the safe and reliable operation of industrial systems. The field has evolved through successive paradigms, from signal-driven analysis and statistical learning to deep learning-based, data-centric diagnosis. While these advances have improved performance and automation, they expose fundamental limits in generalization, interpretability, and adaptability.

We are now at a transitional moment shaped by large language models and foundation models, which expand the representational and reasoning capacity of diagnostic systems. This keynote offers a unifying perspective on large-model paradigms for MFD and introduces the distinction between “*large models for MFD*” and “*large models of MFD*,” positioning large models as enablers rather than endpoints. Through the **PHM-GPT** case study, we illustrate unified diagnosis and reasoning and outline a vision for next-generation diagnostic intelligence driven by reasoning, knowledge, multimodality, and agent-enabled systems.