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From kinetics to imagery: A JMAK-informed,
chained predictive artificial intelligence
method for interpretable steel microstructure
simulation

S. Bazri, C. Mapelli, D. Mombelli, R. Nemfardi, R. Bedini, G. Zucchelli

This paper presents a novel, physically informed machine learning (ML) framework for the accurate modeling and
visualization of steel microstructure evolution during annealing. Utilizing a chained support vector regression (SVR)
architecture with optimized hyperparameters, the model sequentially predicts key microstructural states, ensuring
metallurgical consistency. The process begins by forecasting recrystallization fraction (RF) kinetics, which is critically
constrained by the classical Johnson-Mehl-Avrami-Kolmogorov (JMAK) model. The resulting JMAK-corrected RF then
serves as a fundamental input to subsequent SVR models, which forecast the average grain size (AGS) and, finally,
essential image-based microstructural features (mean and standard deviation of pixel intensity). This chained approach
inherently prioritizes physically sound outputs, avoiding the consistency issues of isolated predictions. A unique
visualization methodology is introduced, which selects and maps the closest experimental inverse pole figure (IPF)
maps to the predicted states. This robust, multi-stage framework establishes a powerful, data-driven tool for simulating
complex material evolution, thus minimizing the need for extensive experimental operations in materials design and
process optimization.
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INTRODUCTION

The drive to accelerate materials design demands a shift
from costly, time-consuming experimental programs
to efficient, data-driven computational methods (Gupta
et al., 2026). While ML has proven transformative across
materials science, successfully predicting static properties
such as strength and hardness, the accurate modeling
of microstructure evolution during thermomechanical
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processing, which dictates the properties, remains a Davide Mombelli
critical, unresolved challenge (Ghaffari Farid et al., 2025; Department of Mechanical Engineering, Politecnico di Milano, 20156
Tiexu et al,, 2024; Bruno et al., 2024). This challenge is bl ity
rooted in the complex, sequential, and interdependent Renato Nemfardi, Roberto Bedini,
nature of phenomena like recrystallization (RX) and grain Giorgio Zucchelli
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growth, where the progression of one state directly taly

dictates the kinetics of the next (Bazri et al., 2023; Song
et al., 2024).

Conventional ML models often fail in this domain because
they treat microstructural features (like recrystallization
fractionand grainsize)asindependent outputs, neglecting
the inherent physical and kinetic laws (e.g., Avrami
kinetics) that govern their relationship (SharafEldin et al.,
2025; C. Wang et al., 2025; X. Wang et al., 2025; Gao et al,,
2025). This results in “black-box" predictions that, while
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numerically accurate within the training domain, frequently
yield physically inconsistent or unrealistic results when
simulating the evolution over time or extrapolating to
new conditions. A need exists for a robust framework that
explicitly embeds metallurgical principles to ensure the
physical integrity of its predictions (Lertkiatpeeti et al.,
2024; Suzuki et al., 2024; Gupta et al., 2023).

This paper chained SVR-JMAK
framework designed to overcome these limitations. The

introduces a novel

central hypothesis is that by integrating a classical JIMAK
kinetic constraint into a sequential SVR architecture,
the predictions that are highly accurate, physically
consistent, and fully interpretable would be achievable.
The framework operates as a chain, where the JMAK-
corrected prediction of RF acts as a critical, physically-
informed input for the subsequent prediction of AGS and
key image-based features. The unique contribution is
further cemented by a visualization methodology, offering
metallurgists a practical, powerful simulation tool for
process optimization.

METHODS: COMPUTATIONAL FRAMEWORK
Dataset and feature engineering
The models were trained using a comprehensive dataset
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derived from annealing experiments on ferritic stainless
steel (FSS), encompassing various annealing soaking
temperatures (AST), annealing incubation times (AIT), and
prior deformation conditions. The target microstructural
features of RF, AGS, and image characteristics, were
extracted from electron backscatter diffraction (EBSD)
IPF maps. input features for the ML models included the
processing parameters (AST, AIT) alongside measured
prior state features such as the initial grain size. To be
exact, the experimental dataset of the samples include
different conditions, from the as-received specimen, 88C
with RF of 0.1%, and (as the equivalent circular diameter
also denoted by d) AGS of 58.24 um, to different annealed
states, including 50C (RF=2.96%, AGS=43.30 um), 53C
(RF=46.0%, AGS=32.36 um), 55C (RF=74.9%, AGS=42.74
um), 64C (RF=4.03%, AGS=48.16 um), 67C (RF=60.0%,
AGS=40.11 um), 68C (RF=91.1%, AGS=41.81 um), 78C
(RF=9.3%, AGS=53.57 um), 80C (RF=40.0%, AGS=38.45
um), and 82C (RF=93.1%, AGS=45.98 um). These specimens
had undergone the AST values of 0.65,0.68,and 0.71, as the
homologous temperature (a temperature ratio between
the annealing temperature over melting point (abbreviated
as TRAM)) and within various AlTs.

001 Jlml

Fig.1 - Representative experimental IPF maps showcasing the microstructure evolution for different annealing
conditions. Each series (a, b, c) corresponds to a different initial EBSD-post-processing calculated RF and displays
the grain structure and AGS at various annealing times.
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The chained SVR-JMAK prediction framework
To address the limitations of conventional ML models
that

SVR architecture, explicitly linking predictions across

ignore physical interdependencies, a chained
sequential stages of microstructural evolution, was

employed. The SVR model, which utilizes a Gaussian
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(Radial basis function (RBF)) kernel, was selected for its
robustness in handling complex, non-linear regression
tasks on limited, high-dimensional materials datasets. The
framework operates in a four-stage, sequential manner, as

elaborated below and according to figure 1.

General lnpul daia:
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Quantitative inputs:
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AGS (pm)
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IPF{£)
RF maps
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Fig.2 - Schematic representation of the chained SVR-JMAK framework for microstructure prediction
and visualization,

As for stage 1 of the initial RF prediction (JMAK constraint),
the JMAK kinetic model is employed first. Using the
non-linear least squares method, the IMAK equation is
fitted directly to the experimental RF data based on AIT
and AST. This step ensures the RF prediction strictly
adheres to known metallurgical transformation kinetics,
guaranteeing physical consistency. The JMAK-modeled
RF is the physically-consistent output of this first
stage. Regarding stage 2 of AGS prediction, the JMAK-
predicted RF is used as a critical, physically-informed and
metallurgically-consistent input feature for the second
SVR model. This SVR then predicts the AGS. This explicit
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link ensures that the predicted grain size is consistent with
the predicted extent of recrystallization. About stage 3 and
image feature prediction, the final stage of the SVR chain
uses both the predicted RF and predicted AGS as inputs to
forecast key image-based features of the microstructure,
specifically the mean and standard deviation of pixel
intensity. These numerical features serve as the critical
proxy for the visual state of the microstructure. At stage 4
as the IPF map visualization and validation, the predicted
image features from stage 3 are used to generate a visual
representation of the final microstructure. This is achieved
by searching the experimental dataset to identify the IPF
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map whose measured features are numerically closest to

the model's predictions.

Model optimization and hyperparameter tuning

All SVR models within the chain were subjected to a
rigorous Bayesian optimization process. This approach
efficiently searchesthe hyperparameter space (specifically
the regularization parameter C, the kernel coefficient vy,
and the epsilon parameter €) to minimize the RMSE on a
dedicated validation set. This systematic tuning ensures
high prediction accuracy and optimal generalization

capability for each stage.

RESULTS AND DISCUSSION
Predictive performance of the chained SVR framework
The

exceptional

architecture demonstrated
the

interdependent microstructural features. The rigorous

sequential, chained

performance in predicting
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Bayesian optimization ensured that each SVR model
achieved optimal hyperparameters, leading to highly
accurate predictions on the held-out test set. About
the recrystallization kinetics through stage I, the IMAK-
predicted model for RF kinetics achieved the highest
predictive performance, with a correlation coefficient (R?)
consistently exceeding 0.97 and a low RMSE. This high
accuracy validates the strategy of embedding a physical
constraint (JMAK) within the ML architecture, resulting
in physically sound evolution curves. The robust fit of
the JIMAK model to experimental data and its reliable
extrapolation capabilities are further illustrated in Figure 3,
which shows the predicted RF evolution over varying AlTs
for different initial recrystallization states (AST series).
The solid lines represent the IMAK model's extrapolation,
while the markers denote the original training data,
confirming the model's ability to accurately capture and

extend the kinetic trends.

® RHF Training Data (AST=0.00)
® RF Trwining Data (AST=0.65)
— RF Extrapolation (JMAK, AST=0.63)
RF Training Data {AST=0.6%)
RF Extrapolation (IMAK, AST=0.68)
® RF Trining Data (AST=0.71)
——RF Exrapolation (JMAK, AST=0.71)

300 350 400 430 500 550

Annealing Incubation Time (min)

Fig.3 - Predicted RF evolution (JMAK).

Moreover, regarding the grain size prediction of stage
II, the SVR model predicting AGS, which utilizes the
predicted RF as a crucial input, also exhibited high fidelity,
with R2 values above 0.95. The success here confirms
the ability of the chained approach to successfully
transfer  physically consistent information across
stages, preventing the propagation of metallurgical

inconsistencies. Figure 4 further supports this, presenting
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the SVR-predicted AGS evolution as a function of AIT.
The curves illustrate the model's capacity to capture the
complex, non-linear changes in grain size across different
AST conditions, accurately reflecting the underlying
microstructural phenomena. The agreement between
the SVR extrapolation lines and the training data points
highlights the model's strong predictive capability for
AGS.
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Fig.4 - Predicted AGS evolution from the SVR Model.

Via stage 3 of the image feature prediction, the final SVR
models successfully mapped the predicted RF and AGS to
the numericalimage features (mean and standard deviation
of pixel intensity), achieving high R? values (>0.94). This
confirms the model’s ability to numerically characterize
the microstructural state, laying the foundation for
accurate visual mapping. Figure 5 represents the SVR-
predicted evolution of mean pixel intensity over AIT for

various AST conditions. The accurate prediction of this
image feature demonstrates the model's capability to
capture subtle changes in the microstructure’s visual
characteristics, which are crucial for the subsequent
visualization stage. The strong correlation between the
predicted curves and experimental data points highlights
the effectiveness of the chained SVR in characterizing

complex image-based features.
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Fig.5 - SVR-predicted evolution of mean pixel intensity:.

Likewise, figure 6 illustrates the SVR-predicted evolution
of the standard deviation of pixel intensity as a function
of AIT. The model accurately predicts the trends
and magnitudes of spread in pixel intensity, further
validating its capacity to capture comprehensive details
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of the microstructure’s texture and heterogeneity. The
consistency between the SVR extrapolations and training
data points highlights the robustness of the chained
approach in predicting complex image-derived features,
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Fig.6 - SVR-predicted evolution of standard deviation of pixel intensity.

Interpretable visualization

The framework's interpretability is realized through the
direct visualization of the predicted microstructural state,
achieved by matching the numerical predictions to the
closestexperimental IPF map. This capability transforms the
model's numerical outputs into a tangible, metallurgically
relevant format, offering a clear visual proxy for the
predicted microstructure. Figure 7 provides a compelling

Predicted Microstructure for AST=0.68, AIT=100.00
Closest Match (RF & AGS): 67C

Predicted: RF=70.4%, AGS=39.7 um, MeanlF=137.3, StdDevIF=64.9
Actual: RF=60.0%, AGS=40.1 um, MeanlF=127.4, StdDevIF=64.2

demonstration of this visualization capability, displaying
examples of the predicted microstructures alongside
their closest matching experimental IPF maps for specific
annealing conditions. The close visual agreement between
the model’s predictions and the actual microstructures
validates the framework’s ability to accurately simulate and
represent complex microstructural evolution,

Predicted Microstructure for AST=0.68, AIT=800.00
Closest Match (RF & AGS): 82C
Predicted: RF=100.0%, AGS=45.8 um, MeanIF=136.5, StdDevIF=63.2

Actual: RF=93.1%, AGS=46.0 um, MeanIF=153.5, StdDevIF=65.3

Fig.7 - Examples of predicted microstructures with their closest matching experimental IPF maps for different
annealing conditions.

The core benefit of the chained SVR-JMAK architecture
is the elimination of metallurgical inconsistencies that
often cause independent-output ML models. By enforcing
the sequential dependency and the JIMAK modeling, the
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framework ensuresthat, forinstance, a partially recrystallized
state (low RF) will not simultaneously be associated with an
unrealistically large grain size (high AGS), thereby yielding
credible predictions across the entire processing window.
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This inherent physical soundness establishes confidence in
the framework's use for process optimization.

CONCLUSION

This study successfully developed and validated a novel ML-
enabled, physically-constrained framework for predicting
steel microstructure evolution. The core innovation lies
in the chained SVR-JMAK architecture, which explicitly
integrates metallurgical principles (JMAK kinetics) into a
sequential prediction pipeline. The framework achieved
superior predictive accuracy, with R? values exceeding
0.97 for key kinetic parameters, demonstrating that the
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integration of physical constraints and data-driven modeling
leads to robust and metallurgically sound results. In
conclusion, this research provides a powerful, data-driven
alternative to extensive experimental testing and complex
physical simulations, paving the way for efficient process
optimization and accelerated materials design. Future
work will focus on expanding the framework to predict
mechanical properties and integrating it into a fully digital-
twin simulation environment for various alloy systems.
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