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INTRODUCTION
The drive to accelerate materials design demands a shift 
from costly, time-consuming experimental programs 
to efficient, data-driven computational methods (Gupta 
et al., 2026). While ML has proven transformative across 
materials science, successfully predicting static properties 
such as strength and hardness, the accurate modeling 
of microstructure evolution during thermomechanical 
processing, which dictates the properties, remains a 
critical, unresolved challenge (Ghaffari Farid et al., 2025; 
Tiexu et al., 2024; Bruno et al., 2024). This challenge is 
rooted in the complex, sequential, and interdependent 
nature of phenomena like recrystallization (RX) and grain 
growth, where the progression of one state directly 
dictates the kinetics of the next (Bazri et al., 2023; Song 
et al., 2024).
Conventional ML models often fail in this domain because 
they treat microstructural features (like recrystallization 
fraction and grain size) as independent outputs, neglecting 
the inherent physical and kinetic laws (e.g., Avrami 
kinetics) that govern their relationship (SharafEldin et al., 
2025; C. Wang et al., 2025; X. Wang et al., 2025; Gao et al., 
2025). This results in “black-box” predictions that, while 
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numerically accurate within the training domain, frequently 
yield physically inconsistent or unrealistic results when 
simulating the evolution over time or extrapolating to 
new conditions. A need exists for a robust framework that 
explicitly embeds metallurgical principles to ensure the 
physical integrity of its predictions (Lertkiatpeeti et al., 
2024; Suzuki et al., 2024; Gupta et al., 2023).
This paper introduces a novel chained SVR-JMAK 
framework designed to overcome these limitations. The 
central hypothesis is that by integrating a classical JMAK 
kinetic constraint into a sequential SVR architecture, 
the predictions that are highly accurate, physically 
consistent, and fully interpretable would be achievable. 
The framework operates as a chain, where the JMAK-
corrected prediction of RF acts as a critical, physically-
informed input for the subsequent prediction of AGS and 
key image-based features. The unique contribution is 
further cemented by a visualization methodology, offering 
metallurgists a practical, powerful simulation tool for 
process optimization.

METHODS: COMPUTATIONAL FRAMEWORK
Dataset and feature engineering
The models were trained using a comprehensive dataset 

derived from annealing experiments on ferritic stainless 
steel (FSS), encompassing various annealing soaking 
temperatures (AST), annealing incubation times (AIT), and 
prior deformation conditions. The target microstructural 
features of RF, AGS, and image characteristics, were 
extracted from electron backscatter diffraction (EBSD) 
IPF maps. input features for the ML models included the 
processing parameters (AST, AIT) alongside measured 
prior state features such as the initial grain size. To be 
exact, the experimental dataset of the samples include 
different conditions, from the as-received specimen, 88C 
with RF of 0.1%, and (as the equivalent circular diameter 
also denoted by d) AGS of 58.24 μm, to different annealed 
states, including 50C (RF=2.96%, AGS=43.30 μm), 53C 
(RF=46.0%, AGS=32.36 μm), 55C (RF=74.9%, AGS=42.74 
μm), 64C (RF=4.03%, AGS=48.16 μm), 67C (RF=60.0%, 
AGS=40.11 μm), 68C (RF=91.1%, AGS=41.81 μm), 78C 
(RF=9.3%, AGS=53.57 μm), 80C (RF=40.0%, AGS=38.45 
μm), and 82C (RF=93.1%, AGS=45.98 μm). These specimens 
had undergone the AST values of 0.65, 0.68, and 0.71, as the 
homologous temperature (a temperature ratio between 
the annealing temperature over melting point (abbreviated 
as TRAM)) and within various AITs.

Fig.1 - Representative experimental IPF maps showcasing the microstructure evolution for different annealing 
conditions. Each series (a, b, c) corresponds to a different initial EBSD-post-processing calculated RF and displays 

the grain structure and AGS at various annealing times.
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Fig.2 - Schematic representation of the chained SVR-JMAK framework for microstructure prediction
and visualization.

As for stage 1 of the initial RF prediction (JMAK constraint), 
the JMAK kinetic model is employed first. Using the 
non-linear least squares method, the JMAK equation is 
fitted directly to the experimental RF data based on AIT 
and AST. This step ensures the RF prediction strictly 
adheres to known metallurgical transformation kinetics, 
guaranteeing physical consistency. The JMAK-modeled 
RF is the physically-consistent output of this first 
stage. Regarding stage 2 of AGS prediction, the JMAK-
predicted RF is used as a critical, physically-informed and 
metallurgically-consistent input feature for the second 
SVR model. This SVR then predicts the AGS. This explicit 

link ensures that the predicted grain size is consistent with 
the predicted extent of recrystallization. About stage 3 and 
image feature prediction, the final stage of the SVR chain 
uses both the predicted RF and predicted AGS as inputs to 
forecast key image-based features of the microstructure, 
specifically the mean and standard deviation of pixel 
intensity. These numerical features serve as the critical 
proxy for the visual state of the microstructure. At stage 4 
as the IPF map visualization and validation, the predicted 
image features from stage 3 are used to generate a visual 
representation of the final microstructure. This is achieved 
by searching the experimental dataset to identify the IPF 

The chained SVR-JMAK prediction framework
To address the limitations of conventional ML models 
that ignore physical interdependencies, a chained 
SVR architecture, explicitly linking predictions across 
sequential stages of microstructural evolution, was 
employed. The SVR model, which utilizes a Gaussian 

(Radial basis function (RBF)) kernel, was selected for its 
robustness in handling complex, non-linear regression 
tasks on limited, high-dimensional materials datasets. The 
framework operates in a four-stage, sequential manner, as 
elaborated below and according to figure 1.
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map whose measured features are numerically closest to 
the model’s predictions.

Model optimization and hyperparameter tuning
All SVR models within the chain were subjected to a 
rigorous Bayesian optimization process. This approach 
efficiently searches the hyperparameter space (specifically 
the regularization parameter C, the kernel coefficient γ, 
and the epsilon parameter ϵ) to minimize the RMSE on a 
dedicated validation set. This systematic tuning ensures 
high prediction accuracy and optimal generalization 
capability for each stage.

RESULTS AND DISCUSSION
Predictive performance of the chained SVR framework
The sequential, chained architecture demonstrated 
exceptional performance in predicting the 
interdependent microstructural features. The rigorous 

Bayesian optimization ensured that each SVR model 
achieved optimal hyperparameters, leading to highly 
accurate predictions on the held-out test set. About 
the recrystallization kinetics through stage I, the JMAK-
predicted model for RF kinetics achieved the highest 
predictive performance, with a correlation coefficient (R2) 
consistently exceeding 0.97 and a low RMSE. This high 
accuracy validates the strategy of embedding a physical 
constraint (JMAK) within the ML architecture, resulting 
in physically sound evolution curves. The robust fit of 
the JMAK model to experimental data and its reliable 
extrapolation capabilities are further illustrated in Figure 3, 
which shows the predicted RF evolution over varying AITs 
for different initial recrystallization states (AST series). 
The solid lines represent the JMAK model’s extrapolation, 
while the markers denote the original training data, 
confirming the model’s ability to accurately capture and 
extend the kinetic trends.

Fig.3 - Predicted RF evolution (JMAK).

Moreover, regarding the grain size prediction of stage 
II, the SVR model predicting AGS, which utilizes the 
predicted RF as a crucial input, also exhibited high fidelity, 
with R2 values above 0.95. The success here confirms 
the ability of the chained approach to successfully 
transfer physically consistent information across 
stages, preventing the propagation of metallurgical 
inconsistencies. Figure 4 further supports this, presenting 

the SVR-predicted AGS evolution as a function of AIT. 
The curves illustrate the model’s capacity to capture the 
complex, non-linear changes in grain size across different 
AST conditions, accurately reflecting the underlying 
microstructural phenomena. The agreement between 
the SVR extrapolation lines and the training data points 
highlights the model’s strong predictive capability for 
AGS.
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Fig.4 - Predicted AGS evolution from the SVR Model.

Via stage 3 of the image feature prediction, the final SVR 
models successfully mapped the predicted RF and AGS to 
the numerical image features (mean and standard deviation 
of pixel intensity), achieving high R2 values (>0.94). This 
confirms the model’s ability to numerically characterize 
the microstructural state, laying the foundation for 
accurate visual mapping. Figure 5 represents the SVR-
predicted evolution of mean pixel intensity over AIT for 

various AST conditions. The accurate prediction of this 
image feature demonstrates the model’s capability to 
capture subtle changes in the microstructure’s visual 
characteristics, which are crucial for the subsequent 
visualization stage. The strong correlation between the 
predicted curves and experimental data points highlights 
the effectiveness of the chained SVR in characterizing 
complex image-based features.

Fig.5 - SVR-predicted evolution of mean pixel intensity.

Likewise, figure 6 illustrates the SVR-predicted evolution 
of the standard deviation of pixel intensity as a function 
of AIT. The model accurately predicts the trends 
and magnitudes of spread in pixel intensity, further 
validating its capacity to capture comprehensive details 

of the microstructure’s texture and heterogeneity. The 
consistency between the SVR extrapolations and training 
data points highlights the robustness of the chained 
approach in predicting complex image-derived features.
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Fig.6 - SVR-predicted evolution of standard deviation of pixel intensity.

Interpretable visualization
The framework’s interpretability is realized through the 
direct visualization of the predicted microstructural state, 
achieved by matching the numerical predictions to the 
closest experimental IPF map. This capability transforms the 
model’s numerical outputs into a tangible, metallurgically 
relevant format, offering a clear visual proxy for the 
predicted microstructure. Figure 7 provides a compelling 

demonstration of this visualization capability, displaying 
examples of the predicted microstructures alongside 
their closest matching experimental IPF maps for specific 
annealing conditions. The close visual agreement between 
the model’s predictions and the actual microstructures 
validates the framework’s ability to accurately simulate and 
represent complex microstructural evolution.

Fig.7 - Examples of predicted microstructures with their closest matching experimental IPF maps for different 
annealing conditions.

The core benefit of the chained SVR-JMAK architecture 
is the elimination of metallurgical inconsistencies that 
often cause independent-output ML models. By enforcing 
the sequential dependency and the JMAK modeling, the 

framework ensures that, for instance, a partially recrystallized 
state (low RF) will not simultaneously be associated with an 
unrealistically large grain size (high AGS), thereby yielding 
credible predictions across the entire processing window. 
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This inherent physical soundness establishes confidence in 
the framework’s use for process optimization.

CONCLUSION
This study successfully developed and validated a novel ML-
enabled, physically-constrained framework for predicting 
steel microstructure evolution. The core innovation lies 
in the chained SVR-JMAK architecture, which explicitly 
integrates metallurgical principles (JMAK kinetics) into a 
sequential prediction pipeline. The framework achieved 
superior predictive accuracy, with R2 values exceeding 
0.97 for key kinetic parameters, demonstrating that the 

integration of physical constraints and data-driven modeling 
leads to robust and metallurgically sound results. In 
conclusion, this research provides a powerful, data-driven 
alternative to extensive experimental testing and complex 
physical simulations, paving the way for efficient process 
optimization and accelerated materials design. Future 
work will focus on expanding the framework to predict 
mechanical properties and integrating it into a fully digital-
twin simulation environment for various alloy systems.
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