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INTRODUCTION
The processes of electric steelmaking are difficult to control in 
an optimal way [1], which makes it beneficial to share control-
related knowledge between multiple plants within the same 
enterprise. The optimization can occur with Digital Twins (DT) 
and optimization models, based on Artificial Intelligence (AI) 
or other techniques. Because the coverage of measurement 
data has inevitable limitations, it is advantageous to share the 
related knowledge between plants. This can occur possibly 
within the same enterprise or co-operating partners if their 
production processes have similarities. 
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To enable knowledge sharing between production plants, 
this article presents a DT framework with Federated 
Learning (FL) to let the local optimization models of each 
plant to learn from the others. In FL, the participating 
parties share their local model with a centralized service 
that creates global weights, effectively isolating the local 
datasets and models yet enabling network-wide benefits 
[2]. The framework has received its motivation from 
electric steelmaking, but the concept is generalizable 
across process industries and other domains, such as 
manufacturing. The research has been carried out as 
a collaboration between multiple partners within the 
research project ALCHIMIA.
The research question of this article is: What kind of 
framework can operate Digital Twins and optimization 
models, including AI, for data-driven purposes to enable 
Federated Learning for network-wide benefits between 
industrial plants when multiple organizations develop the 
software components?
Earlier, the same topic has been discussed in a conference 
presentation [3]. This article is an extension to the 
conference abstract and presentation.
The structure of this document is based upon the method 
Design Science Research (DSR), which aims to build 
solutions based on tangible, relevant requirements, 
contributing to the scientific rigour [4]. The next section 
surveys the state of art, setting the scientific background. 
Then come the requirements for the framework, followed 
by the design and the related proof of concept. Finally, 
the results are discussed and concluded.

RELATED WORK
Earlier projects have aimed to increase the intelligence 
level of industrial process control with AI and related 
technologies. For instance, DTs can be a part of a 
system that forms cognitive capabilities for production 
optimization, as shown in CAPRI [5] and COGNITWIN [6]. 
On the other hand, AI systems can develop autonomous 
Self-X functionality with the help external supporting 
entities, such as the Autonomic Manager as shown in 
s-X-AIPI [7]. In similar cases, FL would enable sharing the 
knowledge of the optimization models.
Regarding FL, most earlier manufacturing- or process-

industry-related works have focused on the mathematical 
aspects instead of information-system-level questions 
with production plants and DTs. As an exception, a 
system design, not only a structure but also operational 
workflows, has been proposed related to industrial asset 
data [8]. Additionally, another system design has been 
proposed for algorithms in condition monitoring [9]. 
Across domains, the recently identified FL challenges 
include scalability and resource constraints, privacy 
preservation, heterogeneity as well as FL applications in 
new sectors [10]. Generally, the FL framework suggested 
in this work, concretely integrated with production plants 
and DT, is situated in a research gap.

REQUIREMENTS FROM INDUSTRIAL OPTIMIZATION
General functional requirements
The main purpose of the system is to provide decision 
support for process optimization. That is, there is a 
Human in the Loop to apply their final judgment instead 
of any direct process control by the models. The decision 
support relies on the measurement data available from 
the actual processes.
Particularly in this work, the focus is on two-unit processes: 
the Electric Arc Furnace (EAF) and Ladle Furnace (LF). 
These are a part of the common production route in 
electric steelmaking (see Figure 1). Within the context of 
the relevant research project ALCHIMIA, multiple scrap-
handling-related aspects were considered as well. These 
include, for instance, scrap mix optimization and scrap 
processing, but these are out of scope. Additionally, any 
steps from casting onwards remain as future work.
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Fig.1 - Electric steelmaking route.

The system should apply FL to generate benefits within 
an ecosystem of participating production plants. The 
framework should enable this for any optimization model 
as long as there are similar models in the ecosystem 
and the principles of the model itself do not prevent FL. 
Concretely, FL is inapplicable if the source data is too 
heterogeneous between the plants or if the underlying 
principle of the model applies no learning of any kind. 
For instance, the scrap data in electric steelmaking 
typically differs considerably between plants. Besides, FL 
is typically applied to Machine Learning models, and an 
explicitly developed model can be inapplicable.

Development-related functional requirements
The system should follow DevOps and MLOps [11] 
principles to enable automatic or close-to-automatic, 
iterative, cyclic development with early feedback about 
error. These principles enable the developer team to 
deploy without relying on a separate operations team 
with possibly conflicting priorities (such as the avoidance 
of repeated updates). Despite the name, the MLOps cycle 
can validate and optimize a variety of models regardless of 
the technology, not only to Machine Learning.
Concretely, the systems should be deployed with 
the Infrastructure as Code (IaC) principle to avoid 
manual installation. Technologies, such as Docker and 
Kubernetes, enable this by letting the developer define 
textual manifest files. These will be interpreted by the 

infrastructure, which automatically sets up the system 
based on the developer’s definition instead of a manual 
installation and configuration for each component. This 
enables a unified, cloneable environment to increase 
productivity.

Non-functional requirements
Security is paramount in any modern information system. 
A professional security approach builds upon a risk 
assessment, and the so-called CIA triad (confidentiality, 
integrity, and availability) is the basis for all information 
security. Additionally, the related term cyber security 
widens the scope to protecting the environment, people 
and assets instead of mere information.
Scalability is another key factor, even in industrial plants, 
due to the high amount of data generated as well as 
unforeseen technological developments. That is, the 
design must consider a scenario where the system 
grows in size, complexity and data volume. Concretely, 
any centralized tools, such as message brokers and 
software infrastructure, should support load balancing 
and encourage the elimination of direct point-to-point 
dependencies between software components.
Heterogeneity is an inevitable feature in industrial data. 
There is a variety of processes, equipment types and 
software components, and these can come from multiple 
manufacturers. Besides, new technologies will introduce 
unforeseen data-related needs. This means that the 
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Fig.2 - ALCHIMIA framework from the viewpoint of a production plant.

system must enable diverse platforms and technologies, 
preferably applying standards or other well-established 
methods for data integration.

FRAMEWORK DESIGN
Figure 2 illustrates the logical structure designed for 

the Digital Twin and Federated Learning framework. The 
following paragraphs will explain these aspects, starting 
from the overarching security, end user goals and raw 
data and leading to the optimization models and FL.

Security
While the concrete security measures depend on the 
security policy of each participating plant, certain elements 
are generic. In the user and developer scope, each person is 
authenticated upon accessing the end user interface or the 
developer interfaces.  In the software component level, each 
network endpoint enforces user authentication and access 
control. Many components provide built-in authentication 
mechanisms for state-of-art tools, such as single sign-
on and Lightweight Directory Access Protocol (LDAP) 
to authenticate against existing credentials. Additionally, 
the users can have finer-grained permissions to assign 

administrator, developer and end user roles, possible on the 
level of a certain unit process or software component.
Besides user authentication, security zones and domains 
are in place. The defence-in-depth principle creates layers 
of security, and the decision support systems should be 
physically separated from production systems.
Additional mechanisms are applicable for availability and 
consistency. In error situations, data loss can be avoided 
with backup systems. In case of an unauthorized use or 
erroneous software, logging enables activity tracking. 
More mechanisms are to be deployed as indicated by a 
continuously active security assessment process.
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End user
From the framework viewpoint, the “end user” aspect 
refers to the various decision support interfaces created 
for the DTs. In the steelmaking context, the end user 
should receive benefit thanks to stable recommendations, 
improved temperature predictions and reduced 
guesswork.
To emphasize that these are DTs rather than Digital 
Shadows, there can be optimization functionality to let 
the operator define setpoints. For instance, in relation to 
the EAF process, the setpoints can include the tapping 
temperature, the target carbon content and the target 
meltdown degree to trigger each scrap basket addition. 
Thanks to web technologies, the user interfaces can 
potentially be accessed from anywhere, but practically 
the access is likely restricted to control rooms or at least 
to the domain of the enterprise.

Raw process data
The measurement data from the processes in the 
foundation of the DTs, and the framework places no 
restrictions related to the physical data sources or 
formats. Concretely, the data sources can be databases, 
control systems, Manufacturing Execution Systems 
(MES), sensors or anything available at the plant.

Plant-wide software infrastructure
The infrastructure provides a layer of services to supply 
data for the DTs in a suitable format. For historical data, 
databases are applied. Respectively, any event-based, 
message-oriented data are best supplied with a message 
broker, such as Apache Kafka or a product compliant 
with Message Queueing Telemetry Transport (MQTT). 
For example, historical data can describe scrap additions 
and past calculations for the process states. On the other 
hand, the actual event of scrap addition can be notified 
with a message describing the scrap types and masses. 
Because any data delivery necessitates preprocessing, the 
infrastructure includes appropriate components, referred 
to as Extract-Transform-Load (ETL).
Additionally, the infrastructure provides an execution 
environment with IaC for remote deployments to facilitate 
software development in external organisations. For IaC, 
Kubernetes provides the foundation. This enables the 

developers to build their components, such as optimization 
models and the user interfaces, as microservices using 
textual manifest files. This eliminates the need to 
manually install and configure each software component 
as well as facilitates the setup of testing environments 
that resemble the actual production environment. This 
automation enables DevOps and MLOps to increase the 
automation degree of software updates. Additionally, 
the container orchestration system provides a physically 
separated network, which isolates the software from the 
outside world, facilitating the configuration of the security 
measures. Finally, Kubernetes promotes scalability now 
that load balancing is built-in feature in the platform, 
and the software component instances (referred to as 
“pods”) can be configured for mutual load balancing. 
These benefits apply to each optimization model and user 
interface.

Optimization models and Digital Twins
The optimization models and DTs operate on the data 
from the ETL and generate decision support for the end 
user. The concrete functionality depends on the use case, 
but a usual approach is to create at least one DT or model 
for each unit process being optimized. In this work, this 
refers to EAF and LF.

Federated Learning
FL enables enterprise-wide or even ecosystem-wide 
benefits depending on the connected organizations (see 
figure 3). In this scheme, each participant shares its local 
model with the centralized service, which will generate 
global weights for the participants. That is, no source data 
is shared within the network, and only the centralized 
service sees the properties of the local models. Thus, in 
principle even competing organizations could participate 
in the same network. On the other hand, even if a single 
enterprise operates all the plants, the scheme reduces 
concerns related to data sharing by restricting the scope.
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Fig.3 - In Federated Learning, the global model enables the local models to be improved.

In ALCHIMIA, each participating plant operates a 
client to send its local updates to the central server 
and receive global weights to learn from the others. 
Despite the asymmetries between the plants, such as 
the computational infrastructure, the physical processes 
and the scrap types, the steelmaking processes share 
the same properties and measures, which enable FL. 
ALCHIMIA applies FL to improve the performance of EAF 
and LF optimization models.

PROOF OF CONCEPT WITH INDUSTRIAL DATA
Software infrastructure and components
For the proof of concept, the software infrastructure 
was built on top of Kubernetes. In this case, it is shared 
between three plants within the same enterprise. With 
Kubernetes, the software development can occur with any 
language and environment as long as this can be packaged 
into a suitable virtualized software image. In practice, the 
developers applied Docker to build their images and 
then push these into a remote image registry. Then, the 
software was deployed with Kubernetes manifests that 
define the address of the image in the registry as well as 
the configuration of the environment. This includes but 
is not limited to network addresses, user credentials to 

other applications (such as databases) and volumes for 
persistent data.
The data integration occurred with two main tools 
depending on the needs. Firstly, any historical data was 
stored in Structured Query Language (SQL) databases 
that operated in the Kubernetes environment. Secondly, 
any event-based, message-oriented data were brokered 
with Apache Kafka. Kafka enables topic-based publish-
subscribe communication, designed to be scalable even 
when the number of data consumers is high and the amount 
of data traffic varies. On the other hand, message-oriented 
communication makes it straightforward to re-use 
existing, possibly standardized, data models. ALCHIMIA 
created three so called Smart Data Models for the FIWARE 
ecosystem, grouped into the subject IndustrialProcess1  

in the domain Smart Manufacturing. This covers three 
message structures generic within process industry 
and especially batch processes: MaterialAddition, 
ProcessChemicalAnalysis and ProcessEvent (such as the 
end of a heat). Related to data, all processing followed the 
privacy and confidentiality policies of each plant.
For the models referred to in this document, the multiple 
Kubernetes components (or pods) were necessary. These 
are summarized in table 1. Both EAF and LF necessitate 

1  https://github.com/smart-data-models/dataModel.IndustrialProcess

https://github.com/smart-data-models/dataModel.IndustrialProcess
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multiple components now that the models and user 
interfaces are separate. Additionally, the EAF model 
stores its results into a database. For both EAF and LF, 

the components were installed for the three participating 
plants.

Pod API Persistent data

EAF web application HTTP (user interface) Configuration

EAF model None (only client towards others) None

EAF model results database SQL Calculated EAF state; model logs

LF web application HTTP (user interface) Configuration; historical data

LF model HTTP Configuration

Life Cycle Assessment (LCA) web 
service HTTP Configuration

Decision support for Electric Arc Furnace
The EAF decision support system includes three main 
views, two of which display results from the DT during 
online operation. First, a diagram displays the evolution of 
the calculated steel temperature and meltdown degree as 
well as the measured steel temperature (see figure 4). The 
same view shows suggestions when to add scrap baskets 

and when to end burner operation as well as the remaining 
electrical energy and oxygen inputs. Second, another 
view shows the calculated carbon and oxygen content 
along with the actual measured values. Third, there is a 
view to browse historical heat information, calculated 
by the DT, to observe past measures and performance. 
Additional screenshots were presented in [3].

Fig.4 - One of the views in EAF decision support, currently in endpoint control stage (some data hidden due to the 
corporate privacy and confidentiality policy).

Tab.1 - Kubernetes pods for Digital Twins for each participating steel plant.
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Additionally, the operator can set control targets for the 
meltdown degree for the scrap basket addition and burner 
shutdown, the tapping temperature as well as the target 
carbon and oxygen content. This makes the DT an active, 
adaptable optimization tool for the Human in the Loop.
Technically, the DT has been developed in Python. Model 
consists of multiple submodels that can be parametrized 
(see [1] for more information). The web application 
technology is Flask.

Decision support for Ladle Furnace
The LF decision support system comprises four main 
views for the operators. First, the dashboard shows the 
current chemical composition, steel weight and tapping 
temperature. The second shows the initial and final 
chemical composition (see figure 5). The third view shows 
the initial and final steel temperature and an overview of 
the added materials. Finally, the fourth view summarizes a 
Life Cycle Assessment (LCA) evaluation of the operation. 
Additional screenshots were presented in [3].

Fig.5 - A part of LF optimization view, depicting the initial and final chemical composition
(some data hidden due to the corporate privacy and confidentiality policy).

Besides, the DT enables optimization by letting the 
operator to define prices for the added materials as well 
as electrical energy. The material additions include, for 
instance, carbon, magnesium oxide, calcium oxide and 
silicon manganese. Besides, the operator can define 
ferroalloy additions. With these inputs, the DT generates 
recommendations.
The DT has been developed in Python. The underlying 
model is a feedforward neural network, the backend 
technology is FastAPI, and the user interface builds upon 
Dash.

Federated Learning results
The FL functionality, while integrated with online data 
for LF, was proven with offline data for both LF and EAF. 
The FL subject was the temperature model for both as 
well as the chemical composition model for LF. For each 
model, FL was applied between multiple plants within 
the same enterprise. Because the LF model is a neural 
network, an FL application was straightforward due to the 
origin in Machine Learning applications. Conversely, the 
application on EAF was less conventional because this 
model is physical or analytical (i.e., based on equations), 
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which means that the model lacks an adaptability similar 
to neural networks. However, FL proved applicable 
when the plants share knowledge related to model 
parametrization, which is a novel opening and promising 
for future research. 
In our EAF implementation, the FL architecture comprised 
two plants and a server that aggregated locally optimized 
parameters each round using weighted FedAvg. In this 
approach, the server aggregates the updates from the 
clients with client-specific weights, so some clients have 
a greater influence on the global model than others. 
The parameters were obtained by running a non-linear 
least squares algorithm. Promising results were reached 
with two sufficiently high-quality datasets, representing 
two separate model instances and plants. Due to the 
asymmetric coverage in a third dataset, it was necessary 
to exclude this to prevent the Mean Absolute Error (MAE) 
of one model from growing. This suggests that the FL 
principle works but depends on data quality, coverage, 
and symmetry or homogeneity. Concretely, problematic 
heterogeneity can result from differences in measurement 
availability, sensor outputs and the data quality.
The LF study involved both temperature and chemical 

composition models, both including a model instance 
from three separate plants and a server that aggregated 
locally trained weights using FedAvg. In both cases, the 
results showed an improvement in two models instances, 
the third indicating a similar or a lowered performance. 
Table 2 shows the results for the temperature model, 
indicating that plants 1 and 3 improved, whereas plant 2 
maintained its R2 score but degraded in Mean Squared 
Error (MSE). Plant 1 had the smallest dataset, while plant 3 
had the lowest data quality and contained more than twice 
the samples of the other two. Therefore, improvements 
for these plants were expected, as they benefited from 
the other plants’ data. In contrast, plant 2, which had the 
strongest training dataset, did not improve due to the 
imbalance in the datasets caused by plant 3’s larger and 
lower-quality data. Again, it appears that FL performance 
can suffer from asymmetric or low-quality datasets, 
but a clear improvement is still possible. However, the 
federated LF temperature model meaningful enhances the 
performance for plants 1 and 3 and does not significantly 
worsen performance for plant 2. 

Model Features
Plant 1 Plant 2 Plant 3

R2 Score MSE R2 Score MSE R2 Score MSE

Local FinalTemperature 0,278 137,33 0,580 36,65 0,158 59,10

Federated FinalTemperature 0,446 98,88 0,579 45,56 0,299 32,77

Federated
FinalTemperature 
95% confidence 
interval

(0.363, 
0.492)

(85.44, 
111.49) (0.465, 0.655) (35.21, 

58.62) (0.232, 0.361) (25.92, 
42.04)

Lessons learned
For future efforts, multiple remarks were made during 
the work. The results are promising, but the proposed 
framework operated in a complex environment with 
multiple organizations, which does not come without 
challenges.
Kubernetes can have a steep learning curve, and if 
managed remotely, the overhead increases. Some of its 

mechanisms can surprise due to primitiveness compared 
to a plain container virtualization environment (such 
as Docker). This is especially related to the persistent 
volumes to keep data when a component restarts or is re-
instantiated. On the other hand, the importance of security 
policies increases when the environment is accessed 
remotely, which adds overhead to both developers and 
administrators. Still, now that most components ran 

Tab.2 - FL improved two of the three LF temperature models: plant 1 and 3.
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in one environment, it was straightforward to enforce 
security policies compared to a network of distributed, 
heterogeneous infrastructures. In the experiment, the 
sole external component was the central FL service.
When models receive data in an event-driven fashion, the 
importance of workflows and functional interoperability 
increases. Clearly, the models cannot operate properly – 
if at all – if an essential message arrives too late or drop 
completely. In any case, in an asynchronous, event-
driven world, the models must be robust to operate even 
in exceptional situations. Additionally, any implications 
on the model and application state must be considered in 
case of inconsistencies in earlier data. For instance, when 
a heat starts and the earlier data have been incomplete, 
the objective should still be to generate clean results for 
the new heat.
It was observed that the success of FL directly depends 
on the availability of models and data from the clients. The 
data must be sufficient in quality and volume, and there 
must be multiple plants integrated. If this condition is not 
met, delays and problems will occur. On the other hand, 
asymmetry in data coverage can lead to no benefit from 
FL in a plant. These factors and risks must be considered 
when planning for the investment. During operation, it 
is advisable to monitor FL performance continuously in 
each participating plant.
In summary, two main factors were identified. First, data 
quality and availability are paramount. Second, the stages 
of any event-driven workflows must be harmonized early.

SOCIETAL, ECONOMIC AND ENVIRONMENTAL 
IMPACT
The platform presumably has an effect on the society, 
economy of the industrial plants, and the environment. 
These influences are elaborated in the following 
paragraphs.
Considering the society, industrial enterprises are core 
actors by providing workplaces, resources and revenue, 
but AI introduces another ethical dimension. This 
has been captured within the AI Act [12], considering 
possible AI-related factors, such as physical human 
interaction, general-purpose applicability, medical aid 
and the processing of personal data. Considering the AI 
Act, ALCHIMIA framework appears to pose no special 

requirements beyond ensuring the AI literacy of the end 
users. Still, this can potentially change if ALCHIMIA’s is 
extended in the future.
Furthermore, ALCHIMIA can contribute to the economic 
performance of industrial enterprises. First, the DTs 
included help enterprises directly in optimizing 
their production activities. Second, FL improves the 
performance of the included DTs. This applies both to 
the related electric steelmaking use case and ALCHIMIA 
framework in general, providing re-usable methods and 
structures for industrial use cases. We expect similar to be 
reachable in any use case with DTs, especially if multiple 
production plants are involved with the same FL network.
Finally, ALCHIMIA framework helps heavy industries 
in reducing their environmental footprint. Although 
economic efforts often align with factors, such as energy 
and resource savings, LCA can be integrated for explicit 
environmental objectives. This is already available for the 
LF model, and a similar tool could be integrated into the 
EAF model. With more extensive LCA efforts, ALCHIMIA 
could host an entire environmental toolkit, providing 
online decision support.

DISCUSSION
The suggested DT framework brings novelty especially 
related to FL. It is among the first ones to suggest an FL 
framework for industrial plants. As far as is known, there 
have been no earlier research to either create an FL 
framework in metallurgy or to parametrize a physical or 
analytical optimization model.
The framework is significant as it applies AI for the 
competitiveness of European steel industry, helping to 
maintain jobs and the domestic production of critical 
resources. It improves the applicability of AI technologies 
in the industrial scope even when the data sources are 
heterogeneous yet share the same principles. Additionally, 
this work developed AI applications towards the green 
transformation, a key overall goal in modern industry.
Certain limitations exist. Only a few plants were included 
in the experiment, and this numerically evaluates FL 
improvements only with offline data (although the FL 
system was integrated with online data and models). 
Besides, it is limited to upstream processes in electric 
steelmaking. There could be a wider study regarding the 
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benefits of the DT and FL framework, including more 
enterprises and production processes.
For the future work, multiple opportunities remain. The 
advantages of FL could be explored further, and there 
could be more focus on Continual Learning to react to any 
degradations in model performance. The concept could be 
expanded to larger enterprise networks, and more of steel 
production processes could be included. The advantages 
of the concept could be explored in other metallurgical 
industries as well as process industries in general (such 
as chemical or pulp and paper) and manufacturing. On 
the other hand, as the software solutions come from 
multiple developers and even separate organizations, 
certain challenges arise. Thus, the advantages of the Data 
Mesh [13] could be researched now that these can enforce 
common interoperability and security policies as well 
as reduce the danger of bottlenecks in data integration 
tasks. In larger multi-actor business ecosystems, there 
could be a coordinating non-profit entity to decide on the 
rules, as earlier suggested for industrial partner networks 
[14]. Finally, as the current system focuses on models to 
optimize single unit processes, there could be FL for the 
plant-wide optimization problems [15].

CONCLUSIONS
This document introduces a DT framework that operates 
optimization models, including AI, and exploits 
enterprise-wide knowledge with FL. The design of the 
framework is based on industrial requirements, and it has 
been proven with actual data. The results suggest that the 
concept is applicable in industrial environments.
The results have indicated that the DT platform, along with 
FL, can improve the performance of production processes 
in electric steelmaking. FL has proven to be effective even 
in the industrial context as demonstrated for both EAF and 
LF. Although the reported experiments are restricted to a 
certain steelmaking route, we can expect similar benefits 
in other industrial FL applications.
A clear challenge in industrial FL is the data heterogeneity 
between plants. Even the plants that operate similar 
processes can vary considerably in the availability of 
the measurements. This not only adds difficulty but also 
effectively prevents certain application areas, such as scrap 
characterization now that scrap suppliers and qualities are 

fundamentally different between plants. Additionally, as 
noticed with EAF, an inferior data quality or coverage can 
hamper benefits at least in a single plant.
Considering the research question presented in the 
introduction, we can summarize that DTs and FL in data-
driven industrial use cases necessitate special attention 
on the local data infrastructure in plants. A scalable 
environment should include services for data storage, 
data delivery and messaging, and container orchestration 
to be used in co-operation between the component 
developers. It is essential to preprocess data to fit for the 
network-wide requirements, or otherwise the plant cannot 
benefit from FL. In any case, only the local infrastructure 
can guarantee FL suitability for the plant.
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