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Deep learning-powered system for automated
detection and quantification of Vickers
indentations

F. Bertolini, M. Mariani, N. Lecis

Hardness testing is a key procedure in materials science for evaluating mechanical properties and process quality.
Traditional Vickers hardness measurement relies on manual identification of indentation diagonals, a process that is
slow, subjective, and prone to variability. This work introduces a deep learning-based pipeline for fully automated
Vickers hardness measurement, combining instance segmentation via Mask R-CNN with sub-pixel geometric fitting
for diagonal extraction. A dataset of 403 micrographs of samples under loads from 10 gf to 2000 gf was assembled
and annotated for training and validation. Hyperparameter optimisation was performed using a Taguchi design of
experiments, and the final model achieved near-perfect segmentation accuracy (overall AP = 90.5%) on the test set.
Measurement accuracy was assessed against manual ground truth, yielding mean relative errors of 1.6-1.9% for the
two diagonals, with most cases within 2-3%. These results demonstrate that the proposed system provides robust
detection, high metrological precision, and reproducible performance across diverse imaging conditions, paving the
way for reliable, high-throughput hardness testing in industrial and research settings.
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INTRODUCTION

Hardness testing remains a fundamental procedure in
materials science and engineering for assessing material
quality, mechanical properties and process efficacy [1].
This method employs a pyramidal diamond indenter
with a 136° angle, and the resulting hardness number is
derived from the applied test force (F) and the measured
average diagonal length (d) of the approximately square-
shaped indentation [2]. Hardness testing is valuable

because the measured metric tends to correlate with key Francesco Bertolini, Marco Mariani,
Nora Lecis

mechanical properties such as tensile strength, ductility Politecnico di Milano, Italy

and wear resistance, thus providing information on the
effects of thermomechanical processing [1, 2]. Accurate
measurement of the indentation diagonal in the Vickers
test is essential: owing to the quadratic dependence on
the diagonal length, any error in its measure is amplified
in the final value [2].

Although routine, manual measurement of Vickers
indentations has its drawbacks. The process is tedious
and repetitive, and for each indentation it may take
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a couple of minutes, making it impractical for high-

throughput settings. Moreover, when an operator
measures the diagonal length, the result depends on their
viewpoint, skill and fatigue, which introduces subjectivity
and variability [1, 3, 4]. In addition, the specimen and
image quality add complications: the indentation edges
are not always sharply defined and may appear more like
shadows than crisp lines. Real-world conditions further
undermine accuracy: variable lighting, reflective or rough
surfaces, etching marks, and defects such as grooves,
cracks or pile-up/sink-in around the indent all affect the

measurement [1, 3, 4].

Classical automated methods based on traditional
computer-vision techniques, such as image thresholding,
edge detection or Hough-transform-based approaches,
can be useful but face limitations in many practical
indentation-measurement settings [5, 6, 7, 8, 9, 10]. For
example, thresholding often works when the indentation
contrasts cleanly with the background, but it becomes
unreliable if illumination is uneven or the contrast
is low. Similarly, Hough-transform or straight-edge
detectors may yield acceptable results when indentation
boundaries are crisp and well aligned, but their accuracy
decreases when the actual boundaries are curved (due
to pile-up/sink-in or surface preparation) or when the
indentation is rotated relative to the image axes. Overall,
while these classical techniques can perform adequately
under controlled conditions, their robustness across the
wide variety of materials, surface finishes and imaging
conditions found in industrial practice remains limited.
Some improved methods, including active-contour
models, focus-assessment routines and custom image-
processing pipelines, extend capabilities further, but they
still often require fine-tuning of parameters (illumination,
focus, threshold) and may be sensitive to surface artefacts

or process variations [11, 12, 13, 14].

limitations of classical
(CNNs)

have been increasingly investigated for Vickers and

To overcome the robustness

automation, Convolutional Neural Networks
Brinell indentation analysis, offering improved automatic
feature extraction capabilities [15, 16, 17, 18, 19, 20, 21].
Approaches vary from directly predicting the Vickers
hardness value via

regression to image-processing
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pipelines utilising CNNs or Fully Convolutional Networks
(FCNs) for indentation localisation and segmentation,
Object detection models such as Faster R-CNN- or
YOLO-based variants have been employed to predict
the indentation as a bounding box, typically as an
intermediate localisation step within broader pipelines
[16,17]. the
bounding-box approach fundamentally limits precision,

While effective for initial localisation,
especially for slightly rotated or irregularly shaped
indentations, as it does not capture pixel-level contour
information that is essential for accurate metrology [6,16].
Other segmentation-based methods, including FCNs and
active-contour-assisted schemes, aim to predict pixel-
level masks and achieve good performance in controlled
conditions [6, 8, 16]. However, in practical metallographic
micrographs, the imprint boundary can be degraded by
heterogeneous microstructures, polishing scratches,
debris, and pile-up/sink-in effects, so that the limiting
factor becomes accurate boundary delineation rather
than coarse localisation. In these cases, semantic masks
or corner-only regression may under-represent locally
distorted or concave edges, and small boundary errors
can propagate nonlinearly into diagonal estimation and
hardness due to the quadratic dependence on diagonal
length. Deep learning approaches in general have shown
clear potential for automating hardness indentation
evaluation, but many reported studies focus on either
relatively small datasets or in ideal conditions (e.q.
reference hardness blocks under controlled imaging),
so their behaviour on more heterogeneous materials
remains less systematically explored [11,14,16,17]. Table
1 summarises the main recent deep-learning approaches

and compares them with the present work.

The goal of this work is to present a robust, pragmatic, and
high-accuracy pipelineforautomatic Vickershardness test
detection and analysis. We achieve this by combining the
precision of a Mask R-CNN-based instance segmentation
model for pixel-accurate indentation boundary detection
with a dedicated geometric fitting procedure for diagonal
Mask R-CNN, an

provides

extraction. instance segmentation

framework, precise segmentation masks
superior to bounding-box approximations or corner-

only detection, thereby addressing the crucial problem
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of accurate boundary delineation in noisy images [22]. To
ensure the robustness and reproducibility of the system'’s
performance across diverse operational settings, we
systematically investigate the influence of various training

conditions using a Taguchi L16 Design of Experiments

Memorie scientifiche - Intelligenza artificiale

(DoE)approach[23,24]. This paper presents thisintegrated
methodology as a demonstrated, alternative, and practical
route to achieve objective and reliable automatic Vickers

test detection and hardness values measurement.

Tab.1 - Comparison of recent deep-learning approaches for automated Vickers indentation analysis, reporting
architecture, diagonal (or hardness) extraction strategy, dataset setting, and the main accuracy metric as reported
in each study.

Comparison with prior works

Study Architecture Diagonal extraction | Data (size & setting) Sfcpu?;tff measurement
Tanaka et al. Dual CNN (rough BB + | Two-stage Large datasets (e.qg., 4140+2400 | Diagonal MAE = 0.4-2.0
(2020) [17] corner refinement) regression (pixels) and 3840+3200 images) pm
i, Linear curve fitting Two industrial datasets: ; ,
J(gl(l)lzlal? [&2L1L]Jhl FCN (RefineNet) + ROl vertex DA=150, DB=216 images PD"Z O;%LM’Q%DEF pX
refinement (1280x1024) 1224
- Oriented bounding | Augmented dataset 12,000 Diagonal MAE = 0.5-5.4
I[‘l‘égf Yin (2021) Eacs,\(le_dE)D (U-Net- box (OBB) on (8:1:1 split); boundary um; max relative error =
predicted mask annotated via sampled points 0.39-1.67%
Direct hardness 105 base indentations;
Chenget al. Multi-task learning rediction augmented mixed images Hardness MAE = 19.7
(2022)[19] (MTL) CNN (pre ression) (train/val/test 5000/500/100);
9 +59 unseen images
; Hybrid (object Contour selection ; :
(Pzr(;vl%%e[;gi‘ev etal. detection + image from detected 108 indentations S?AC’E”Q?}C[/'@[ relative
processing) imprint °
Mask R-CNN Sub-pixel fitting : . Diagonal MAE = 2.3-
This work (instance via signed é(gégﬁszk(;o—zooo gf; 2.7 px; relative MAE =
segmentation) distance fields 1.8-2.0%

MATERIALS AND METHODS

Dataset Acquisition and Preparation

A dataset of Vickers microhardness indentations was
assembled from laboratory measurements conducted
with an FM-180 microindenter by FUTURE-TECH CORP
on polished metallic and ceramic samples under different
loads, ranging from 10 gf up to 2000 gf. Micrographs
were acquired using an optical microscope integrated
within the hardness tester. Each image contained one or
two indentations exhibiting typical variations in contrast,
surface finish, and minor optical artefacts commonly
encountered in metallographic imaging. A total of 403

images were collected.
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All micrographs were manually annotated using 4-point
polygonal masks tightly enclosing each indentation,
through LabelMe. Annotations were exported in COCO-
compatible format to enable direct use within the Mask
R-CNN framework. The dataset was then divided into
independent training (75%), validation (15%), and test
(10%) subsets, ensuring that no visually similar images

appeared across different splits (three-way split) [25].

Model Architecture

Indentation segmentation was performed using a Mask
R-CNN architecture [22], employing a ResNet-101
backbone and Feature Pyramid Network (FPN). This
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configuration extracts multi-scale features to ensure
robustness across indentation sizes, enabling the two-
stage pipeline to jointly localise and segment instances at
the pixel level.

This design, originally proposed for high-precision
instance segmentation tasks, is particularly suitable
for Vickers impressions, where accurate delineation
of the indentation edges is required for geometric
measurement. Compared with single-stage object
detectors, the two-stage Mask R-CNN paradigm typically
provides higher segmentation fidelity, which is essential
for the subsequent extraction of diagonals.

The network weights were initialised from a COCO-
pretrained model to leverage generic visual features. Only

one object class (“indentation”) was used.

Model Training and Hyperparameters Optimisation

The objective of training was to obtain high-fidelity
segmentation masks while maintaining  sufficient
recall to detect all impressions present in an image.
Hyperparameters influencing convergence and mask
quality were explored through astructured Taguchidesign
of experiments (L ,(44)) [26], enabling systematic variation
of four key factors: learning rate, weight decay, number of
training epochs, and the RPN non-maximum suppression
threshold. This design allowed systematic sampling of the
hyperparameter space while limiting the total number of
training runs to sixteen. Each configuration (see table 2)
was trained independently on the same train/validation
split, and segmentation performance was quantified on
the validation set using the COCO mask average precision

(segmAP).

that observed

across the DoE were not attributable to stochastic

To ensure performance differences

Where F is the applied load in kgf and d is expressed in

mm.

Basic quality-controlcriteriawereapplied, excludingcases
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training variability, each of the sixteen hyperparameter
configurations was trained three times with different
random seeds; occasional unstable runs were discarded
and replaced with the mean of the corresponding stable
repetitions. The three validation scores obtained for each
configuration were then aggregated (mean and variance),
providingamorereliable estimate of the true performance

associated with each hyperparameter combination.

The hyperparameter configuration yielding the highest
validation segmentation accuracy was selected for
final training. The final model was retrained on the
combined training and validation sets using the optimal
configuration identified through the Taguchi analysis and
compared against the baseline model (retrained on the

same combined training and validation data).

Geometric Measurements and Hardness Computation
After instance segmentation, each detected indentation
mask was processed by a geometric fitting routine to
recover the two Vickers diagonals using the OpenCV
library [27]. For each detected indentation mask, a signed
distance field was computed from the binary region using
(28], [29],

and the 0-level isocontour was extracted via a marching

standard distance-transform formulations

squares scheme [30]. The resulting sub-pixel contour was
partitioned into four arcs using the top, bottom, left, and
right extrema, each arc corresponding to one side of the
rhomboidal imprint. A straight line was then fitted to each
arc using an orthogonal (total least-squares) regression
[31]. Intersections between adjacent fitted lines yielded
four sub-pixel vertices of the indentation.

The two Vickers diagonals were obtained from opposite
vertex pairs. Their arithmetic mean, d, was used in the

standard Vickers hardness as in equation 1 [2]:

F
HV = 1.8544 — [1]

where the predicted shape was excessively distorted, too
small for reliable measurement, or located near the image
boundary. Surviving instances were retained for hardness

computation and downstream analysis.
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Tab.2 - Taguchi Design of Experiment employed for the hyperparameter optimisation.

Taguchi DoE (L, 4¢)

Run base_lr weight_decay max_epochs rpn_nms_thresh
0 5e-4 5e-6 5 0.3
1 5e-4 1.7e-4 10 0.5
2 5e-4 3.35e-4 15 0.7
3 5e-4 5e-4 20 0.9
4 7e-3 5e-6 10 0.7
5 7e-3 1.7e-4 5 0.9
6 7e-3 3.35e-4 20 0.3
7 7e-3 5e-4 15 0.5
8 1.35e-2 5e-6 15 0.9
9 1.35e-2 1.7e-4 20 0.7
10 1.35e-2 3.35e-4 5 0.5
11 1.35e-2 5e-4 10 0.3
12 2e-2 5e-6 20 0.5
13 2e-2 1.7e-4 15 0.3
14 2e-2 3.35e-4 10 0.9
15 2e-2 5e-4 5 0.7
Baseline 2.5e-4 le-4 12 0.7
Evaluation Protocol statistics, correlation coefficients and Bland-Altman

Segmentation  performance

was

using analysis.

An additional

multiphase

microstructure

COCO mask average precision (segmAP). During the
hyperparameter study, the mean validation segmAP over
three training seeds was used as the response variable for
each Taguchi configuration, with standard deviation as an
indicator of stability. For the baseline and final models,
AP, AP, AP_, AP)

were computed on the independent test set,

segmAP and size-specific APs (AP

50/ 75!

Diagonal-measurement accuracy was assessed on the test
subset with manual reference diagonals as ground truth.
For each detected indentation, d, and d, were compared

through absolute and relative errors, tolerance-band
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example was used to show the model performance; the
pixel-to-micron conversion was manually calculated
from the scale bar in the image and given to the code as
input.

RESULTS AND DISCUSSION

Baseline model training

The baseline Mask R-CNN model was first trained using
the default hyperparameter configuration described in
the Methods section. The training progressed smoothly,

as shown in figure 1, with all loss components decaying
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monotonically and stabilising after the first few hundred
iterations. The absence of oscillations or divergence
indicates a well-behaved optimisation process even
without any hyperparameter tuning.

On the validation set, the baseline model reached a
segmentation AP above 86%, with almost perfect AP,  and
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AP above 97%, confirming that a standard configuration
already provides robust indentation detection (tab.
3). Size-specific APs also remained consistently high,
suggesting that the network generalised well across the
typical range of indentation dimensions encountered in
the dataset.

Training losses vs iteration

—— total_loss
1.50 - ~—— loss_cls
—— loss_box_reg
—— loss_mask
1.25 —— loss_rpn_cls
—— loss_rpn_loc
1.00 A
w
w
[=]
= 0,75
0.50 +
0.25 1
0.00 -
0 250 500 750 1000 1250 1500 1750
Iteration

Fig.1 - Training loss profiles vs. iteration number for the baseline model trained on the train subset.

Tab.3 -Segmentation performance of the baseline model on the validation subset,

Baseline on validation subset

Run segmAP [%] AP50 [%]

AP75 [%]

APs [%] APm [%] APL[%]

Baseline 86.5+0.1 99.7+0.3

95.4£0.1

83.3+0.4 83.3+0.1 90.9+0.1

Hyperparameters optimisation (Taguchi DoE)

Across the 16 Taguchi configurations, the mean validation
AP spanned a wide range, from mid-84% for the weakest
settings to more than 93% for the best-performing ones.
This substantial spread already indicates a strong depend-
ence of segmentation accuracy on the chosen hyperpa-
rameters. For each configuration, the average AP and its
standard deviation across seeds are reported in table 4.
High-performing runs generally exhibit low variability,

La Metallurgia Italiana - January 2026

whereas lower-performing setups show larger fluctua-
tions or, in a few cases, instability. Divergence occurred
in two repetitions of run 14 and in one repetition of run 15,
exclusively in configurations combining relatively high
learning rates with short training schedules or insufficient
optimisation time. These unstable repetitions were ex-

cluded and replaced by the mean of the valid runs.

The ANOVA (tab. 5) identifies max_epochs as the domi-
nant factor (F = 9.51, p = 0.048), and the main-effects re-
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sponse table (fig. 2) confirms this, showing the largest A (=
6.7 AP points) and a strong monotonic increase in perfor-
mance from 5to 20 epochs. The RPN NMS threshold is the
second most influential factor, with a A = 3.1 AP points. In-
termediate NMS levels provide the best balance between
suppressing redundant proposals and retaining closely
spaced indentations.

In contrast, base learning rate and weight decay show
considerably smaller A values (= 1.9 and 1.3 AP points,
respectively) and no statistically significant effects in the
ANOVA (p > 0.5 for both). The small coefficients of these

Memorie scientifiche - Intelligenza artificiale

terms in the linear model further confirm that, within the
tested ranges, the model is relatively insensitive to mod-
erate variations of these two parameters. Overall, the
response analysis demonstrates that adequate training
duration and appropriate NMS filtering are the key driv-
ers of segmentation performance, while learning rate and
weight decay exert only secondary, fine-tuning effects.
Accordingly, the best-performing configuration identified
by the Taguchi design corresponds to a learning rate of
0.007, a weight decay of 3.35x10, a training schedule of
20 epochs and an RPN NMS threshold of 0.30.

Tab.4 - Validation segmentation AP (mean + std) for each Taguchi DoE run over three random seeds.

Taguchi DoE (L, 4%)

Run SegmAP [%] Run SegmAP [%]

0 85.6+0.3 8 90.3+0.4

1 88.1+1.1 9 90.5+2.2

2 90.4+0.5 10 86.4+2.2

3 91.4+0.3 11 92.6+1.3

4 90.5+1.4 12 92.8+1.3

5 85.5£1.9 13 92.9+1.1

6 93.6+0.6 14 84.9+0

7 92.4+0.9 15 84.0+4.4

Tab.5 - Analysis of variance (ANOVA) for the Taguchi design.
Taguchi DoE (L, 4%)

Source Adj Mean Square F-value p-value
base_lr 3.138 0.81 0.568
weight_decay 1.347 0.35 0.796
max_epochs 36.973 9.51 0.048
rpn_nms_thresh 7.361 1.89 0.307

Residual Error 3.887

La Metallurgia Italiana - Gennaio 2026
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Fig.2 - Average Precision dependence over the analysed model factors optimised by Taguchi DoE.

Best model training and comparison with baseline
The
identified by the Taguchi design was then used to retrain

best-performing hyperparameter configuration
the final Mask R-CNN model on the combined training
and validation sets. A direct comparison of the training
dynamics in figure 3 highlights the substantial impact of
this optimisation onthe learning behaviour. Inthe baseline
run (letft panel), convergence is relatively gradual: the
total loss decreases slowly and requires on the order of
1000 iterations to reach a stable plateau at about 0.38.
By contrast, the optimised model (right panel) exhibits
much more efficient learning, with the total loss dropping

Training losses vs iteration

1.6 —— total_loss
—— loss_cls
1.4 4 —— loss_box_reg
—— loss_mask
1.2 4 —— loss_rpn_cls
—— loss_rpn_loc
1.0
]
8 0.8
-
0.6
0.4
0.2
0.0

1000 1500 2000

Iteration

steeply within the first =250 iterations and stabilising at a
markedly lower value, close to 0.20.
this

loss remains consistently lower for the optimised

In addition to overall reduction, the mask
configuration throughout training. This indicates that
the tuned hyperparameters enable the network to
resolve indentation boundaries with higher fidelity and
confidence, effectively reducing pixel-level segmentation
errors that would otherwise propagate into the diagonal
into the computed

measurements and, ultimately,

hardness values.

Training losses vs iteration

—— total_loss
1.0 —— loss_cls
— loss_box_reg
—— loss_mask
0.8 1 —— loss_rpn_cls
—— loss_rpn_loc
0.6 1
a
8
0‘4 | L
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0.0 1
0 500 1000 1500 2000 2500 3000 3500
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Fig.3 - Comparison of training loss profiles vs. iteration number for the baseline (left) and the optimised model
(right), trained on combined training and validation data.
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Even in its baseline configuration, the Mask R-CNN

demonstrates strong segmentation capabilities: it
consistently detects indentation regions and produces
masks that align reasonably well with the true imprint
geometry. This behaviour is evident in the top panel of
figure 4, where the baseline model correctly identifies and
segments most indentations, yielding visually coherent

masks for medium and large imprints.

However, qualitative inspection also highlights clear
limitations of the baseline model, particularly on more
challenging samples. In low-contrast regions or in
the presence of strong background texture, polishing
scratches or debris, the predicted boundaries tend to be
slightly irregular and, in some cases, the model produces
spurious detections. While these issues do not drastically
undermine average performance, they are critical from
an operational standpoint: in an industrial context, the
system must be highly reliable, and any false positive
or irregular mask is unacceptable, as it directly corrupts
estimation and hardness

the subsequent diagonal

computation.

The optimised model, obtained through the Taguchi
hyperparameter exploration and final retraining, mitigates
these weaknesses. The bottom panel of figure 4 shows
the corresponding predictions from the best model
for the same three test images. In the first example, the
optimised model produces a cleaner and more tightly
aligned mask around the indentation edges, markedly
reducing the small boundary irregularities still visible
in the baseline output. In the second, more challenging
example, where the baseline model produced two false
positives, the optimised model correctly identifies a
single indentation with no spurious detections. Inthe third
example, representing a large and well-defined imprint,
both models perform well, but the optimised model
exhibits sharper contour definition and a more consistent
alignment between the mask and the underlying imprint
geometry.

Quantitatively, the optimised configuration delivers a clear
and consistent improvement over the baseline on the test
subset, as summarised in table 6. In the COCO framework,

the overall AP is the primary summary metric: it averages
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detection performance over a range of loU thresholds
(typically from 0.50 to 0.95), so it rewards models that are
not only able to detect objects but also to delineate them
accurately across different levels of overlap. A higher AP
therefore indicates a globally more reliable segmentation
behaviour, both in terms of finding indentations and in
terms of matching their true shape.

The individual components AP, and AP, provide
additional insight. The first measures performance at a
relatively loose overlap threshold (loU = 0.5), reflecting
the ability of the model to locate indentations in
approximately the right position. AP, computed at a
stricter threshold (loU = 0.75), is more sensitive to precise
contouralignment and boundary quality. In our case, both

models already reach perfect AP, , indicating that almost

50!
all indentations are detected without gross localisation
errors. The advantage of the optimised model emerges at
higher loU and in the global AP: AP__reaches essentially
perfect levels, and the mean AP increases, showing that
the optimised network segments indentation contours

more accurately rather than merely “finding” them.

Size-specific metrics AP_, AP_and AP, further characterise
the different

grouping small, medium and large imprints, respectively.

behaviour across indentation sizes,
Improvements in AP_and AP_ are particularly relevant
here, because smaller and medium-sized indentations
are more susceptible to noise, contrast variations and
polishing artefacts. The optimised model achieves higher
AP_and AP_,indicatingmorerobust performance onthese
more difficult cases, while AP, also increases, confirming
that large, well-defined imprints are segmented with very

high fidelity.
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lindentation 100% 88

Fig.4 - Qualitative comparison of segmentation results: top row - baseline model; bottom row - optimised
model.

Tab.6 - Comparison of segmentation performance between the baseline and optimised models on the test subset

Baseline and Optimal on test subset

Run segmAP [%] AP50 [%] AP75 [%] APs [%] APm [%] APL[%)]
Baseline 87.7+0.4 100 95.6+0.2 83.3+0.5 83.4+0.2 91.0+0.1
Optimal 90.5+0.5 100 100 90.0 87.7+0.4 95.5+0.5

Diagonal measurements performance

The agreement between automatic and manual diagonal
measurements is consistently high and remains stable
across the full range of indentation sizes. As shown in
the scatter plots (fig. 5), the predicted diagonal lengths
follow the ground-truth values almost perfectly, with
no evident scale-dependent deviations from the identity
line. This linear behaviour is confirmed quantitatively
by the determination coefficients (R* > 0.998 for both d,
and d,; tab. 7), demonstrating that the model generalises
effectively across different magnifications and indentation
sizes rather than regressing toward an average value
learned from the training set.

The error distribution relative to practical tolerances is

La Metallurgia Italiana - January 2026

reported in table 8. Approximately 70% of all indentations
fall within a strict +2% relative error, while relaxing the
tolerance to +5%, arange often cited as the inter-operator
variability band in manual Vickers testing [4, 32], raises
the acceptance rate to about 94% for d, and ~88% for d,
Beyond £10%, the method essentially saturates, covering
more than 99% of cases. The low median relative error
(=1.2-1.3%), compared with the slightly higher mean
relative error (=1.8-2.0%), indicates a mildly right-skewed
distribution: typical predictions are highly accurate,
and the mean is affected primarily by a small number of
challenging images rather than by systematic model drift.
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Tab.7 - Summary of diagonal-measurement accuracy for the best-performing model. Metrics are averaged across
repetitions and reported with standard deviations. MAE, median absolute error (MEDAE) and P95 refer to relative
errors; R2 quantifies the agreement between predicted and reference diagonals; Bland-Altman statistics are reported

as mean bias and limits of agreement (LOA), expressed in both pixels and relative terms.

Diagonal Measurement Accuracy (Absolute & Relative Errors, Correlation, Bland-Altman)

Diagonal MAE [%)] MEDAE [%] P95 [%] R?
d, 1.8£0.2 1.310.2 5.1:0.1 0.999 £ 0.001
d, 2.0£0.1 1.20.1 6.6£0.3 0.998 0,001
Diagonal BA bias [px] BA bias [%] LOA [px] LOA [%]
d, +1.3£05 +0.9+0.3 [-4.23-6.67] [-2.78-4.39]
d, -0.1+05 -0.1+0.3 [-8.64-8.16] [-5.84-5.51]

Tab.8 - Fraction of predicted diagonals falling within £2%, +5% and +10% of the manual reference, averaged across.

Threshold within Relative Error

Diagonal +2% [%] +5% [%] +10% [%]
d, 69.5:0.1 94.0+0.1 98.70.2
d, 70.80.1 87.8+0.2 99.1£0.1

The Bland-Altman analysis (fig. 5) clarifies the nature of
these deviations. The mean bias is negligible (about +1
pixel for d, and approximately 0 pixels for d,), showing
that the segmentation step does not consistently
enlarge or shrink the indentation outlines. The limits of
agreement remain roughly constant across the full range
of diagonal lengths (on the order of + 6-8 px), meaning
that the magnitude of the errors does not systematically
increase for larger or smaller indentations. This behaviour
indicates that most discrepancies arise from local, pixel-
level uncertainty at the indentation edges rather than
from any scaling distortion or drift in the geometric
fitting. Because this pixel-level uncertainty is essentially
constant, its relative impact is naturally higher for very
small indentations, which explains the few outliers in the

error distribution.
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A modest asymmetry is observed between the two
diagonals: d, consistently shows slightly narrower limits of
agreement than d,. Nevertheless, both diagonals achieve
extremely high linear agreement, and the correlation
for d, remains above R2 = 0.998, fully consistent with the

behaviour observed for d,.

that Vickers hardness is
proportional to the square of the diagonal, the observed
error magnitudes (MAE(d,) = 2.30.3 px; MAE(d,) = 2.70.3

px) translate into modest and well-bounded variations

Finally, given inversely

in the computed HV. In practical terms, the automatic
that

matches, and in many cases may exceed, the consistency

system delivers a measurement repeatability

of manual microscopic readings.
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Fig.5 - Metrological validation of the diagonals for a single repetition (seed 65). (Top) Scatter plot comparing the
automatic predictions against the manual ground truth measurements. (Middle) Bland-Altman plot displaying
the measurement differences against the average of the two methods, indicating the systematic bias (dashed

line) and limits of agreement (dotted lines). (Bottom) Histogram showing the frequency distribution of the
relative errors.

Implementation example steel. The image was acquired from a polished cross-
To demonstrate the model’s capability in a realistic section without etching, and it exhibits marked surface
metallurgical workflow, the pipeline was tested on an heterogeneity, including polishing scratches and strong
optical micrograph of a MIG soldering pool in S355 phase/reflectivity contrast.Inthisdemonstrative caseonly,
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the pixel-to-micron conversion was obtained manually
fromtheimage scale bar and provided asinput to compute
hardness values in HV units. As illustrated in figure 6,
the system successfully detected all four indentations,
effectively distinguishing the imprints from background
artefacts that typically confound standard thresholding or
edge-detection algorithms. The quantitative comparison
between the hardness values obtained by automated (HV

Al) and manual (HV_GT) indentation detection is detailed

Memorie scientifiche - Intelligenza artificiale

in table 9. The system maintained high metrological
accuracy even in this complex landscape, with relative
errors ranging from -0.99% (ID 01) to -3.98% (ID 03).
The observed A% values (=1-4%) are consistent with the
diagonal error distributions reported in the tables 7-8.
These results indicate that the segmentation network is
sufficiently robust to handle the optical noise and texture
variations inherent to routine metallographic inspections
of industrial alloys.

Tab.9 - Vickers hardness values calculated by the Al model (HV_AI) compared to the ground truth (HV_GT) manually
measured for the indentations in figure 6 and the respective percentage variation.

HV comparison

1D HV_AI HV_GT A%
01 207.5 209.6 -0.99
02 189.7 193.6 -2.03
03 209.9 218.6 -3.98
04 226.1 228.7 -1.16

Fig.6 - Example of ML-backed indentations detection and Vickers hardness analysis performed on a multiphasic
microstructure with multiple indentations and surface defects.

CONCLUSIONS

This work presented a robust, deep learning-based
framework for fully automated Vickers hardness
indentation detection and values calculation, effectively
addressing the limitations of subjectivity and low
throughput inherent to manual testing. By integrating

a Mask R-CNN architecture with a rigorous Taguchi-

La Metallurgia Italiana - Gennaio 2026

based hyperparameter optimisation, the system achieved
precise instance segmentation even under challenging
imaging conditions. The experimental analysis showed
that training duration and non-maximum suppression
thresholds are the critical factors driving segmentation
performance, whereas the model proved relatively

insensitive to minor variations in learning rate.
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Metrological validation against manual ground truth
confirmed the system’s high accuracy and reliability.
The automated diagonal measurements exhibit relative
errors consistently confined within narrow industrial
tolerances (+5% for most cases). Importantly, the pipeline
demonstrates scale invariance and robustness against
surface defects, effectively bridging the gap between

academic computer vision and practical laboratory
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DATA AND CODE AVAILABILITY

The code developed and the dataset used for this study
are not publicly available at this time, as they constitute
the basis for several ongoing and planned research works.
The dataset used in this study was collected internally and
is therefore not publicly released. Reasonable requests
for methodological clarification may be addressed by the
corresponding authors.

requirements.
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