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INTRODUCTION
Hardness testing remains a fundamental procedure in 
materials science and engineering for assessing material 
quality, mechanical properties and process efficacy [1]. 
This method employs a pyramidal diamond indenter 
with a 136° angle, and the resulting hardness number is 
derived from the applied test force (F) and the measured 
average diagonal length (d) of the approximately square-
shaped indentation [2]. Hardness testing is valuable 
because the measured metric tends to correlate with key 
mechanical properties such as tensile strength, ductility 
and wear resistance, thus providing information on the 
effects of thermomechanical processing [1, 2]. Accurate 
measurement of the indentation diagonal in the Vickers 
test is essential: owing to the quadratic dependence on 
the diagonal length, any error in its measure is amplified 
in the final value [2].

Although routine, manual measurement of Vickers 
indentations has its drawbacks. The process is tedious 
and repetitive, and for each indentation it may take 
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a couple of minutes, making it impractical for high-
throughput settings. Moreover, when an operator 
measures the diagonal length, the result depends on their 
viewpoint, skill and fatigue, which introduces subjectivity 
and variability [1, 3, 4]. In addition, the specimen and 
image quality add complications: the indentation edges 
are not always sharply defined and may appear more like 
shadows than crisp lines. Real-world conditions further 
undermine accuracy: variable lighting, reflective or rough 
surfaces, etching marks, and defects such as grooves, 
cracks or pile-up/sink-in around the indent all affect the 
measurement [1, 3, 4].

Classical automated methods based on traditional 
computer-vision techniques, such as image thresholding, 
edge detection or Hough-transform-based approaches, 
can be useful but face limitations in many practical 
indentation-measurement settings [5, 6, 7, 8, 9, 10]. For 
example, thresholding often works when the indentation 
contrasts cleanly with the background, but it becomes 
unreliable if illumination is uneven or the contrast 
is low. Similarly, Hough-transform or straight-edge 
detectors may yield acceptable results when indentation 
boundaries are crisp and well aligned, but their accuracy 
decreases when the actual boundaries are curved (due 
to pile-up/sink-in or surface preparation) or when the 
indentation is rotated relative to the image axes. Overall, 
while these classical techniques can perform adequately 
under controlled conditions, their robustness across the 
wide variety of materials, surface finishes and imaging 
conditions found in industrial practice remains limited. 
Some improved methods, including active-contour 
models, focus-assessment routines and custom image-
processing pipelines, extend capabilities further, but they 
still often require fine-tuning of parameters (illumination, 
focus, threshold) and may be sensitive to surface artefacts 
or process variations [11, 12, 13, 14].

To overcome the robustness limitations of classical 
automation, Convolutional Neural Networks (CNNs) 
have been increasingly investigated for Vickers and 
Brinell indentation analysis, offering improved automatic 
feature extraction capabilities [15, 16, 17, 18, 19, 20, 21]. 
Approaches vary from directly predicting the Vickers 
hardness value via regression to image-processing 

pipelines utilising CNNs or Fully Convolutional Networks 
(FCNs) for indentation localisation and segmentation. 
Object detection models such as Faster R-CNN- or 
YOLO-based variants have been employed to predict 
the indentation as a bounding box, typically as an 
intermediate localisation step within broader pipelines 
[16,17]. While effective for initial localisation, the 
bounding-box approach fundamentally limits precision, 
especially for slightly rotated or irregularly shaped 
indentations, as it does not capture pixel-level contour 
information that is essential for accurate metrology [6,16]. 
Other segmentation-based methods, including FCNs and 
active-contour-assisted schemes, aim to predict pixel-
level masks and achieve good performance in controlled 
conditions [6, 8, 16]. However, in practical metallographic 
micrographs, the imprint boundary can be degraded by 
heterogeneous microstructures, polishing scratches, 
debris, and pile-up/sink-in effects, so that the limiting 
factor becomes accurate boundary delineation rather 
than coarse localisation. In these cases, semantic masks 
or corner-only regression may under-represent locally 
distorted or concave edges, and small boundary errors 
can propagate nonlinearly into diagonal estimation and 
hardness due to the quadratic dependence on diagonal 
length. Deep learning approaches in general have shown 
clear potential for automating hardness indentation 
evaluation, but many reported studies focus on either 
relatively small datasets or in ideal conditions (e.g. 
reference hardness blocks under controlled imaging), 
so their behaviour on more heterogeneous materials 
remains less systematically explored [11,14,16,17]. Table 
1 summarises the main recent deep-learning approaches 
and compares them with the present work.

The goal of this work is to present a robust, pragmatic, and 
high-accuracy pipeline for automatic Vickers hardness test 
detection and analysis. We achieve this by combining the 
precision of a Mask R-CNN-based instance segmentation 
model for pixel-accurate indentation boundary detection 
with a dedicated geometric fitting procedure for diagonal 
extraction. Mask R-CNN, an instance segmentation 
framework, provides precise segmentation masks 
superior to bounding-box approximations or corner-
only detection, thereby addressing the crucial problem 
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Tab.1 - Comparison of recent deep-learning approaches for automated Vickers indentation analysis, reporting 
architecture, diagonal (or hardness) extraction strategy, dataset setting, and the main accuracy metric as reported

in each study.

of accurate boundary delineation in noisy images [22]. To 
ensure the robustness and reproducibility of the system’s 
performance across diverse operational settings, we 
systematically investigate the influence of various training 
conditions using a Taguchi L16 Design of Experiments 

(DoE) approach [23, 24]. This paper presents this integrated 
methodology as a demonstrated, alternative, and practical 
route to achieve objective and reliable automatic Vickers 
test detection and hardness values measurement.

Comparison with prior works 

Study Architecture Diagonal extraction Data (size & setting) Reported measurement 
accuracy

Tanaka et al. 
(2020) [17]

Dual CNN (rough BB + 
corner refinement)

Two-stage 
regression (pixels)

Large datasets (e.g., 4140+2400 
and 3840+3200 images)

Diagonal MAE ≈ 0.4–2.0 
μm

Jalilian & Uhl 
(2021) [21] FCN (RefineNet)

Linear curve fitting 
+ ROI vertex 
refinement

Two industrial datasets: 
DA=150, DB=216 images 
(1280×1024)

Diagonal MAE: 7.03 px 
(DA), 3.24 px (DB)

Li & Yin (2021) 
[18]

FCN-ED (U-Net-
based)

Oriented bounding 
box (OBB) on 
predicted mask

Augmented dataset 12,000 
(8:1:1 split); boundary 
annotated via sampled points

Diagonal MAE ≈ 0.5–5.4 
μm; max relative error ≈ 
0.39–1.67%

Cheng et al. 
(2022) [19]

Multi-task learning 
(MTL) CNN

Direct hardness 
prediction 
(regression)

105 base indentations; 
augmented mixed images 
(train/val/test 5000/500/100); 
+59 unseen images

Hardness MAE ≈ 19.7 
HV

Privezentsev et al. 
(2019) [20]

Hybrid (object 
detection + image 
processing)

Contour selection 
from detected 
imprint

108 indentations Geometrical relative 
MAE < 4%

This work
Mask R-CNN 
(instance 
segmentation)

Sub-pixel fitting 
via signed 
distance fields

403 images (10–2000 gf); 
COCO masks

Diagonal MAE ≈ 2.3–
2.7 px; relative MAE ≈ 
1.8–2.0%

MATERIALS AND METHODS
Dataset Acquisition and Preparation
A dataset of Vickers microhardness indentations was 
assembled from laboratory measurements conducted 
with an FM-180 microindenter by FUTURE-TECH CORP 
on polished metallic and ceramic samples under different 
loads, ranging from 10 gf up to 2000 gf. Micrographs 
were acquired using an optical microscope integrated 
within the hardness tester. Each image contained one or 
two indentations exhibiting typical variations in contrast, 
surface finish, and minor optical artefacts commonly 
encountered in metallographic imaging. A total of 403 
images were collected.

All micrographs were manually annotated using 4-point 
polygonal masks tightly enclosing each indentation, 
through LabelMe. Annotations were exported in COCO-
compatible format to enable direct use within the Mask 
R-CNN framework. The dataset was then divided into 
independent training (75%), validation (15%), and test 
(10%) subsets, ensuring that no visually similar images 
appeared across different splits (three-way split) [25].

Model Architecture
Indentation segmentation was performed using a Mask 
R-CNN architecture [22], employing a ResNet-101 
backbone and Feature Pyramid Network (FPN). This 
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configuration extracts multi-scale features to ensure 
robustness across indentation sizes, enabling the two-
stage pipeline to jointly localise and segment instances at 
the pixel level.
This design, originally proposed for high-precision 
instance segmentation tasks, is particularly suitable 
for Vickers impressions, where accurate delineation 
of the indentation edges is required for geometric 
measurement. Compared with single-stage object 
detectors, the two-stage Mask R-CNN paradigm typically 
provides higher segmentation fidelity, which is essential 
for the subsequent extraction of diagonals.
The network weights were initialised from a COCO-
pretrained model to leverage generic visual features. Only 
one object class (“indentation”) was used.

Model Training and Hyperparameters Optimisation
The objective of training was to obtain high-fidelity 
segmentation masks while maintaining sufficient 
recall to detect all impressions present in an image. 
Hyperparameters influencing convergence and mask 
quality were explored through a structured Taguchi design 
of experiments (L16(44)) [26], enabling systematic variation 
of four key factors: learning rate, weight decay, number of 
training epochs, and the RPN non-maximum suppression 
threshold. This design allowed systematic sampling of the 
hyperparameter space while limiting the total number of 
training runs to sixteen. Each configuration (see table 2) 
was trained independently on the same train/validation 
split, and segmentation performance was quantified on 
the validation set using the COCO mask average precision 
(segmAP).

To ensure that performance differences observed 
across the DoE were not attributable to stochastic 

training variability, each of the sixteen hyperparameter 
configurations was trained three times with different 
random seeds; occasional unstable runs were discarded 
and replaced with the mean of the corresponding stable 
repetitions. The three validation scores obtained for each 
configuration were then aggregated (mean and variance), 
providing a more reliable estimate of the true performance 
associated with each hyperparameter combination.

The hyperparameter configuration yielding the highest 
validation segmentation accuracy was selected for 
final training. The final model was retrained on the 
combined training and validation sets using the optimal 
configuration identified through the Taguchi analysis and 
compared against the baseline model (retrained on the 
same combined training and validation data).

Geometric Measurements and Hardness Computation
After instance segmentation, each detected indentation 
mask was processed by a geometric fitting routine to 
recover the two Vickers diagonals using the OpenCV 
library [27]. For each detected indentation mask, a signed 
distance field was computed from the binary region using 
standard distance-transform formulations [28], [29], 
and the 0-level isocontour was extracted via a marching 
squares scheme [30]. The resulting sub-pixel contour was 
partitioned into four arcs using the top, bottom, left, and 
right extrema, each arc corresponding to one side of the 
rhomboidal imprint. A straight line was then fitted to each 
arc using an orthogonal (total least-squares) regression 
[31]. Intersections between adjacent fitted lines yielded 
four sub-pixel vertices of the indentation.
The two Vickers diagonals were obtained from opposite 
vertex pairs. Their arithmetic mean, d, was used in the 
standard Vickers hardness as in equation 1 [2]:

Where F is the applied load in kgf and d is expressed in 
mm. 

Basic quality-control criteria were applied, excluding cases 

where the predicted shape was excessively distorted, too 
small for reliable measurement, or located near the image 
boundary. Surviving instances were retained for hardness 
computation and downstream analysis.
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Taguchi DoE (L1644)

Run base_lr weight_decay max_epochs rpn_nms_thresh

0 5e-4 5e-6 5 0.3

1 5e-4 1.7e-4 10 0.5

2 5e-4 3.35e-4 15 0.7

3 5e-4 5e-4 20 0.9

4 7e-3 5e-6 10 0.7

5 7e-3 1.7e-4 5 0.9

6 7e-3 3.35e-4 20 0.3

7 7e-3 5e-4 15 0.5

8 1.35e-2 5e-6 15 0.9

9 1.35e-2 1.7e-4 20 0.7

10 1.35e-2 3.35e-4 5 0.5

11 1.35e-2 5e-4 10 0.3

12 2e-2 5e-6 20 0.5

13 2e-2 1.7e-4 15 0.3

14 2e-2 3.35e-4 10 0.9

15 2e-2 5e-4 5 0.7

Baseline 2.5e-4 1e-4 12 0.7

Tab.2 - Taguchi Design of Experiment employed for the hyperparameter optimisation.

Evaluation Protocol 
Segmentation performance was evaluated using 
COCO mask average precision (segmAP). During the 
hyperparameter study, the mean validation segmAP over 
three training seeds was used as the response variable for 
each Taguchi configuration, with standard deviation as an 
indicator of stability. For the baseline and final models, 
segmAP and size-specific APs (AP50, AP75, APs, APm, APl) 
were computed on the independent test set.
Diagonal-measurement accuracy was assessed on the test 
subset with manual reference diagonals as ground truth. 
For each detected indentation, d1 and d2 were compared 
through absolute and relative errors, tolerance-band 

statistics, correlation coefficients and Bland-Altman 
analysis. An additional multiphase microstructure 
example was used to show the model performance; the 
pixel-to-micron conversion was manually calculated 
from the scale bar in the image and given to the code as 
input.

RESULTS AND DISCUSSION
Baseline model training
The baseline Mask R-CNN model was first trained using 
the default hyperparameter configuration described in 
the Methods section. The training progressed smoothly, 
as shown in figure 1, with all loss components decaying 
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Hyperparameters optimisation (Taguchi DoE)

Across the 16 Taguchi configurations, the mean validation 
AP spanned a wide range, from mid-84% for the weakest 
settings to more than 93% for the best-performing ones. 
This substantial spread already indicates a strong depend-
ence of segmentation accuracy on the chosen hyperpa-
rameters. For each configuration, the average AP and its 
standard deviation across seeds are reported in table 4. 
High-performing runs generally exhibit low variability, 

whereas lower-performing setups show larger fluctua-
tions or, in a few cases, instability. Divergence occurred 
in two repetitions of run 14 and in one repetition of run 15, 
exclusively in configurations combining relatively high 
learning rates with short training schedules or insufficient 
optimisation time. These unstable repetitions were ex-
cluded and replaced by the mean of the valid runs.

The ANOVA (tab. 5) identifies max_epochs as the domi-
nant factor (F ≈ 9.51, p ≈ 0.048), and the main-effects re-

Fig.1 - Training loss profiles vs. iteration number for the baseline model trained on the train subset.

monotonically and stabilising after the first few hundred 
iterations. The absence of oscillations or divergence 
indicates a well-behaved optimisation process even 
without any hyperparameter tuning.
On the validation set, the baseline model reached a 
segmentation AP above 86%, with almost perfect AP50 and 

AP75 above 97%, confirming that a standard configuration 
already provides robust indentation detection (tab. 
3). Size-specific APs also remained consistently high, 
suggesting that the network generalised well across the 
typical range of indentation dimensions encountered in 
the dataset.

Baseline on validation subset

Run segmAP [%] AP50 [%] AP75 [%] APs [%] APm [%] APl [%]

Baseline 86.5±0.1 99.7±0.3 95.4±0.1 83.3±0.4 83.3±0.1 90.9±0.1

Tab.3 -Segmentation performance of the baseline model on the validation subset.
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sponse table (fig. 2) confirms this, showing the largest Δ (≈ 
6.7 AP points) and a strong monotonic increase in perfor-
mance from 5 to 20 epochs. The RPN NMS threshold is the 
second most influential factor, with a Δ ≈ 3.1 AP points. In-
termediate NMS levels provide the best balance between 
suppressing redundant proposals and retaining closely 
spaced indentations.

In contrast, base learning rate and weight decay show 
considerably smaller Δ values (≈ 1.9 and 1.3 AP points, 
respectively) and no statistically significant effects in the 
ANOVA (p > 0.5 for both). The small coefficients of these 

terms in the linear model further confirm that, within the 
tested ranges, the model is relatively insensitive to mod-
erate variations of these two parameters. Overall, the 
response analysis demonstrates that adequate training 
duration and appropriate NMS filtering are the key driv-
ers of segmentation performance, while learning rate and 
weight decay exert only secondary, fine-tuning effects. 
Accordingly, the best-performing configuration identified 
by the Taguchi design corresponds to a learning rate of 
0.007, a weight decay of 3.35×10-4, a training schedule of 
20 epochs and an RPN NMS threshold of 0.30.

Taguchi DoE (L1644)

Run SegmAP [%] Run SegmAP [%]

0 85.6±0.3 8 90.3±0.4

1 88.1±1.1 9 90.5±2.2

2 90.4±0.5 10 86.4±2.2

3 91.4±0.3 11 92.6±1.3

4 90.5±1.4 12 92.8±1.3

5 85.5±1.9 13 92.9±1.1

6 93.6±0.6 14 84.9±0

7 92.4±0.9 15 84.0±4.4

Tab.4 - Validation segmentation AP (mean ± std) for each Taguchi DoE run over three random seeds.

Taguchi DoE (L1644)

Source Adj Mean Square F-value p-value

base_lr 3.138 0.81 0.568

weight_decay 1.347 0.35 0.796

max_epochs 36.973 9.51 0.048

rpn_nms_thresh 7.361 1.89 0.307

Residual Error 3.887

Tab.5 - Analysis of variance (ANOVA) for the Taguchi design.
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Best model training and comparison with baseline
The best-performing hyperparameter configuration 
identified by the Taguchi design was then used to retrain 
the final Mask R-CNN model on the combined training 
and validation sets. A direct comparison of the training 
dynamics in figure 3 highlights the substantial impact of 
this optimisation on the learning behaviour. In the baseline 
run (letft panel), convergence is relatively gradual: the 
total loss decreases slowly and requires on the order of 
1000 iterations to reach a stable plateau at about 0.38. 
By contrast, the optimised model (right panel) exhibits 
much more efficient learning, with the total loss dropping 

steeply within the first ≈250 iterations and stabilising at a 
markedly lower value, close to 0.20.
In addition to this overall reduction, the mask 
loss remains consistently lower for the optimised 
configuration throughout training. This indicates that 
the tuned hyperparameters enable the network to 
resolve indentation boundaries with higher fidelity and 
confidence, effectively reducing pixel-level segmentation 
errors that would otherwise propagate into the diagonal 
measurements and, ultimately, into the computed 
hardness values.

Fig.2 - Average Precision dependence over the analysed model factors optimised by Taguchi DoE.

Fig.3 - Comparison of training loss profiles vs. iteration number for the baseline (left) and the optimised model 
(right), trained on combined training and validation data.
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Even in its baseline configuration, the Mask R-CNN 
demonstrates strong segmentation capabilities: it 
consistently detects indentation regions and produces 
masks that align reasonably well with the true imprint 
geometry. This behaviour is evident in the top panel of 
figure 4, where the baseline model correctly identifies and 
segments most indentations, yielding visually coherent 
masks for medium and large imprints.

However, qualitative inspection also highlights clear 
limitations of the baseline model, particularly on more 
challenging samples. In low-contrast regions or in 
the presence of strong background texture, polishing 
scratches or debris, the predicted boundaries tend to be 
slightly irregular and, in some cases, the model produces 
spurious detections. While these issues do not drastically 
undermine average performance, they are critical from 
an operational standpoint: in an industrial context, the 
system must be highly reliable, and any false positive 
or irregular mask is unacceptable, as it directly corrupts 
the subsequent diagonal estimation and hardness 
computation.

The optimised model, obtained through the Taguchi 
hyperparameter exploration and final retraining, mitigates 
these weaknesses. The bottom panel of figure 4 shows 
the corresponding predictions from the best model 
for the same three test images. In the first example, the 
optimised model produces a cleaner and more tightly 
aligned mask around the indentation edges, markedly 
reducing the small boundary irregularities still visible 
in the baseline output. In the second, more challenging 
example, where the baseline model produced two false 
positives, the optimised model correctly identifies a 
single indentation with no spurious detections. In the third 
example, representing a large and well-defined imprint, 
both models perform well, but the optimised model 
exhibits sharper contour definition and a more consistent 
alignment between the mask and the underlying imprint 
geometry.

Quantitatively, the optimised configuration delivers a clear 
and consistent improvement over the baseline on the test 
subset, as summarised in table 6. In the COCO framework, 
the overall AP is the primary summary metric: it averages 

detection performance over a range of IoU thresholds 
(typically from 0.50 to 0.95), so it rewards models that are 
not only able to detect objects but also to delineate them 
accurately across different levels of overlap. A higher AP 
therefore indicates a globally more reliable segmentation 
behaviour, both in terms of finding indentations and in 
terms of matching their true shape.

The individual components AP50 and AP75 provide 
additional insight. The first measures performance at a 
relatively loose overlap threshold (IoU ≥ 0.5), reflecting 
the ability of the model to locate indentations in 
approximately the right position. AP75, computed at a 
stricter threshold (IoU ≥ 0.75), is more sensitive to precise 
contour alignment and boundary quality. In our case, both 
models already reach perfect AP50, indicating that almost 
all indentations are detected without gross localisation 
errors. The advantage of the optimised model emerges at 
higher IoU and in the global AP: AP75 reaches essentially 
perfect levels, and the mean AP increases, showing that 
the optimised network segments indentation contours 
more accurately rather than merely “finding” them.

Size-specific metrics APs, APm and APl further characterise 
the behaviour across different indentation sizes, 
grouping small, medium and large imprints, respectively. 
Improvements in APs and APm are particularly relevant 
here, because smaller and medium-sized indentations 
are more susceptible to noise, contrast variations and 
polishing artefacts. The optimised model achieves higher 
APs and APm, indicating more robust performance on these 
more difficult cases, while APl also increases, confirming 
that large, well-defined imprints are segmented with very 
high fidelity.
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Fig.4 - Qualitative comparison of segmentation results: top row - baseline model; bottom row - optimised 
model.

Baseline and Optimal on test subset

Run segmAP [%] AP50 [%] AP75 [%] APs [%] APm [%] APl [%]

Baseline 87.7±0.4 100 95.6± 0.2 83.3±0.5 83.4±0.2 91.0±0.1

Optimal 90.5±0.5 100 100 90.0 87.7±0.4 95.5±0.5

Tab.6 - Comparison of segmentation performance between the baseline and optimised models on the test subset

Diagonal measurements performance
The agreement between automatic and manual diagonal 
measurements is consistently high and remains stable 
across the full range of indentation sizes. As shown in 
the scatter plots (fig. 5), the predicted diagonal lengths 
follow the ground-truth values almost perfectly, with 
no evident scale-dependent deviations from the identity 
line. This linear behaviour is confirmed quantitatively 
by the determination coefficients (R² > 0.998 for both d1 
and d2; tab. 7), demonstrating that the model generalises 
effectively across different magnifications and indentation 
sizes rather than regressing toward an average value 
learned from the training set.
The error distribution relative to practical tolerances is 

reported in table 8. Approximately 70% of all indentations 
fall within a strict ±2% relative error, while relaxing the 
tolerance to ±5%, a range often cited as the inter-operator 
variability band in manual Vickers testing [4, 32], raises 
the acceptance rate to about 94% for d1 and ≈88% for d2. 

Beyond ±10%, the method essentially saturates, covering 
more than 99% of cases. The low median relative error 
(≈1.2–1.3%), compared with the slightly higher mean 
relative error (≈1.8–2.0%), indicates a mildly right-skewed 
distribution: typical predictions are highly accurate, 
and the mean is affected primarily by a small number of 
challenging images rather than by systematic model drift.



Memorie scientifiche - Intelligenza artificiale 

La Metallurgia Italiana - Gennaio 2026	 pagina 20

Diagonal Measurement Accuracy (Absolute & Relative Errors, Correlation, Bland–Altman)

Diagonal MAE [%] MEDAE [%] P95 [%] R2

d¹ 1.8±0.2 1.3±0.2 5.1±0.1 0.999 ± 0.001

d2 2.0±0.1 1.2±0.1 6.6±0.3 0.998 ± 0.001

Diagonal BA bias [px] BA bias [%] LOA [px] LOA [%]

d1 +1.3 ± 0.5 +0.9 ± 0.3 [-4.23 – 6.67] [-2.78 – 4.39]

d2 −0.1 ± 0.5 −0.1 ± 0.3 [-8.64 – 8.16] [-5.84 – 5.51]

Tab.7 - Summary of diagonal-measurement accuracy for the best-performing model. Metrics are averaged across 
repetitions and reported with standard deviations. MAE, median absolute error (MEDAE) and P95 refer to relative 

errors; R² quantifies the agreement between predicted and reference diagonals; Bland–Altman statistics are reported 
as mean bias and limits of agreement (LOA), expressed in both pixels and relative terms.

Threshold within Relative Error

Diagonal ±2% [%] ±5% [%] ±10% [%]

d1 69.5±0.1 94.0±0.1 98.7±0.2

d2 70.8±0.1 87.8 ±0.2 99.1±0.1

Tab.8 - Fraction of predicted diagonals falling within ±2%, ±5% and ±10% of the manual reference, averaged across.

The Bland-Altman analysis (fig. 5) clarifies the nature of 
these deviations. The mean bias is negligible (about +1 
pixel for d1 and approximately 0 pixels for d2), showing 
that the segmentation step does not consistently 
enlarge or shrink the indentation outlines. The limits of 
agreement remain roughly constant across the full range 
of diagonal lengths (on the order of ± 6-8 px), meaning 
that the magnitude of the errors does not systematically 
increase for larger or smaller indentations. This behaviour 
indicates that most discrepancies arise from local, pixel-
level uncertainty at the indentation edges rather than 
from any scaling distortion or drift in the geometric 
fitting. Because this pixel-level uncertainty is essentially 
constant, its relative impact is naturally higher for very 
small indentations, which explains the few outliers in the 
error distribution.

A modest asymmetry is observed between the two 
diagonals: d1 consistently shows slightly narrower limits of 
agreement than d2. Nevertheless, both diagonals achieve 
extremely high linear agreement, and the correlation 
for d2 remains above R² = 0.998, fully consistent with the 
behaviour observed for d1.

Finally, given that Vickers hardness is inversely 
proportional to the square of the diagonal, the observed 
error magnitudes (MAE(d1) = 2.3±0.3 px; MAE(d2) = 2.7±0.3 
px) translate into modest and well-bounded variations 
in the computed HV. In practical terms, the automatic 
system delivers a measurement repeatability that 
matches, and in many cases may exceed, the consistency 
of manual microscopic readings.
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Fig.5 - Metrological validation of the diagonals for a single repetition (seed 65). (Top) Scatter plot comparing the 
automatic predictions against the manual ground truth measurements. (Middle) Bland–Altman plot displaying 
the measurement differences against the average of the two methods, indicating the systematic bias (dashed 

line) and limits of agreement (dotted lines). (Bottom) Histogram showing the frequency distribution of the 
relative errors.

Implementation example
To demonstrate the model’s capability in a realistic 
metallurgical workflow, the pipeline was tested on an 
optical micrograph of a MIG soldering pool in S355 

steel. The image was acquired from a polished cross-
section without etching, and it exhibits marked surface 
heterogeneity, including polishing scratches and strong 
phase/reflectivity contrast. In this demonstrative case only, 
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the pixel-to-micron conversion was obtained manually 
from the image scale bar and provided as input to compute 
hardness values in HV units. As illustrated in figure 6, 
the system successfully detected all four indentations, 
effectively distinguishing the imprints from background 
artefacts that typically confound standard thresholding or 
edge-detection algorithms. The quantitative comparison 
between the hardness values obtained by automated (HV_
AI) and manual (HV_GT) indentation detection is detailed 

in table 9. The system maintained high metrological 
accuracy even in this complex landscape, with relative 
errors ranging from -0.99% (ID 01) to -3.98% (ID 03). 
The observed Δ% values (≈1–4%) are consistent with the 
diagonal error distributions reported in the tables 7-8. 
These results indicate that the segmentation network is 
sufficiently robust to handle the optical noise and texture 
variations inherent to routine metallographic inspections 
of industrial alloys.

HV comparison

ID HV_AI HV_GT Δ%

01 207.5 209.6 -0.99

02 189.7 193.6 -2.03

03 209.9 218.6 -3.98

04 226.1 228.7 -1.16

Tab.9 - Vickers hardness values calculated by the AI model (HV_AI) compared to the ground truth (HV_GT) manually 
measured for the indentations in figure 6 and the respective percentage variation.

Fig.6 - Example of ML-backed indentations detection and Vickers hardness analysis performed on a multiphasic 
microstructure with multiple indentations and surface defects.

CONCLUSIONS
This work presented a robust, deep learning-based 
framework for fully automated Vickers hardness 
indentation detection and values calculation, effectively 
addressing the limitations of subjectivity and low 
throughput inherent to manual testing. By integrating 
a Mask R-CNN architecture with a rigorous Taguchi-

based hyperparameter optimisation, the system achieved 
precise instance segmentation even under challenging 
imaging conditions. The experimental analysis showed 
that training duration and non-maximum suppression 
thresholds are the critical factors driving segmentation 
performance, whereas the model proved relatively 
insensitive to minor variations in learning rate.
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Metrological validation against manual ground truth 
confirmed the system’s high accuracy and reliability. 
The automated diagonal measurements exhibit relative 
errors consistently confined within narrow industrial 
tolerances (±5% for most cases). Importantly, the pipeline 
demonstrates scale invariance and robustness against 
surface defects, effectively bridging the gap between 
academic computer vision and practical laboratory 
requirements.

DATA AND CODE AVAILABILITY
The code developed and the dataset used for this study 
are not publicly available at this time, as they constitute 
the basis for several ongoing and planned research works. 
The dataset used in this study was collected internally and 
is therefore not publicly released. Reasonable requests 
for methodological clarification may be addressed by the 
corresponding authors.
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